A Self-stabilizing Link-Coloring Protocol Resilient to Unbounded Byzantine Faults in Arbitrary Networks

  • Toshimitsu Masuzawa
  • Sébastien Tixeuil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3974)

Abstract

Self-stabilizing protocols can tolerate any type and any number of transient faults. However, in general, self-stabilizing protocols provide no guarantee about their behavior against permanent faults. This paper proposes a self-stabilizing link-coloring protocol resilient to (permanent) Byzantine faults in arbitrary networks. The protocol assumes the central daemon, and uses 2Δ−1 colors where Δ is the maximum degree in the network. This protocol guarantees that any link (u,v) between non faulty processes u and v is assigned a color within 2Δ+2 rounds and its color remains unchanged thereafter. Our protocol is Byzantine insensitive in the sense that the subsystem of correct processes remains operating properly in spite of unbounded Byzantine faults.

Keywords

distributed protocol self-stabilization link-coloring Byzantine fault fault tolerance fault containment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures. In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabiling failure detectors. International Journal of Systems Science 28(11), 1177–1187 (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Beauquier, J., Kekkonen-Moneta, S.: On ftss-solvable distributed problems. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, p. 290 (1997)Google Scholar
  4. 4.
    Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)CrossRefMATHGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  6. 6.
    Gandham, S., Dawande, M., Prakash, R.: Link scheduling in sensor networks: Distributed edge coloring revisited. In: Proceedings of Infocom 2005. IEEE Press, Los Alamitos (2005)Google Scholar
  7. 7.
    Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7(1), 55–59 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance. In: Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, pp. 195–206 (1993)Google Scholar
  9. 9.
    Gradinariu, M., Johnen, C.: Self-stabilizing Neighborhood Unique Naming under Unfair Scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In: Procedings of the 4th International Conference on Principles of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000, pp. 55–70 (2000)Google Scholar
  11. 11.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Inf. Process. Lett. 87(5), 251–255 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Information processing letters 95(1), 307–312 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Masuzawa, T.: A fault-tolerant and self-stabilizing protocol for the topology problem. In: Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pp. 1.1–1.15 (1995)Google Scholar
  15. 15.
    Matsui, H., Inoue, M., Masuzawa, T., Fujiwara, H.: Fault-tolerant and self-stabilizing protocols using an unreliable failure detector. IEICE Transactions on Information and Systems E83-D(10), 1831–1840 (2000)Google Scholar
  16. 16.
    Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceedings of 21st IEEE Symposium on Reliable Distributed Systems, pp. 22–29 (2002)Google Scholar
  17. 17.
    Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to byzantine faults in tree networks. In: 8th International Conference on Principles of Distributed Systems, Grenoble, France, December 15-17, pp. 196–206 (2004)Google Scholar
  18. 18.
    Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algorithms via systematic randomization. In: Proceedings of the International Workshop on Parallel Processing, Bangalore, India, pp. 668–673. Tata-McGrawhill, New Delhi (1994)Google Scholar
  19. 19.
    Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proceedings of the Second Workshop on Self-stabilizing Systems (WSS 1995), pp. 7.1–7.15 (1995)Google Scholar
  20. 20.
    Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Inf. Sci. 69(3), 219–227 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ukena, S., Katayama, Y., Masuzawa, T., Fujiwara, H.: A self-stabilizing spanning tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction J85-D-I(11), 1007–1014 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toshimitsu Masuzawa
    • 1
  • Sébastien Tixeuil
    • 2
  1. 1.Osaka UniversityJapan
  2. 2.LRI-CNRS UMR 8623 & INRIA Grand LargeFrance

Personalised recommendations