Advertisement

A Modified Laplacian Smoothing Approach with Mesh Saliency

  • Mao Zhihong
  • Ma Lizhuang
  • Zhao Mingxi
  • Li Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4073)

Abstract

A good saliency map captures the locally sharp features effectively. So a number of tasks in graphics can benefit from a computational model of mesh saliency. Motivated by the conception of Lee’s mesh saliency [12] and its successful application to mesh simplification and viewpoint selection, we modified Laplacian smoothing operator with mesh saliency. Unlike the classical Laplacian smoothing, where every new vertex of the mesh is moved to the barycenter of its neighbors, we set every new vertex position to be the linear interpolation between its primary position and the barycenter of its neighbors. We have shown how incorporating mesh saliency with Laplacian operator can effectively preserve most sharp features while denoising the noisy model. Details of our modified Laplacian smoothing algorithm are discussed along with the test results in this paper.

Keywords

Mesh Fairing Lapalacian Smoothing Operator Perceptually Salient Shape Features Mesh Saliency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taubin, G.: A Signal Processing Approach to Fair Surface Design. In: Proceedings Siggraph 1995, pp. 351–358 (1995)Google Scholar
  2. 2.
    Bajaj, C., Xu, G.: Anisotropic Diffusion of Noisy Surfaces and Noisy Functions on Surfaces. Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, TICAM Report 01-07 (2001)Google Scholar
  3. 3.
    Hildebrandt, K., Polthier, K.: Anisotropic Filtering of Non-Linear Surface Features. In: EUROGRAPHICS 2004, vol. 23(3), Zuse Institute Berlin (2004)Google Scholar
  4. 4.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data. In: Graphics Interface, pp. 145–152 (2000)Google Scholar
  5. 5.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In: Proceedings of SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar
  6. 6.
    Tasdizen, T., Whitaker, R., Burchard, P., Asher, S.: Geometric Surface Smoothing via Anisotropic Diffusion of The Normals. In: Proc. IEEE Visualization 2002, pp. 125–132 (2002)Google Scholar
  7. 7.
    Ohtake, Y., Belyaev, A., Seidel, H.-P.: Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normal. Vision, modeling and visualization 203–210 (2002)Google Scholar
  8. 8.
    Jones, T.R., Durand, F., Desbrun, M.: Non-Iterative, Feature-Preserving Mesh Smoothing. ACM Transactions on Graphics 21(3), 943–949 (2003)CrossRefGoogle Scholar
  9. 9.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral Mesh Denoising. ACM Transactions on Graphics 21(3), 950–953 (2003)CrossRefGoogle Scholar
  10. 10.
    Choudhury, P., Tumblin, J.: The Trilateral Filter for High Contrast Images and Meshes. In: Proc. of the Eurographics Symposium on Rendering, pp. 186–196 (2004)Google Scholar
  11. 11.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  12. 12.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh Saliency. In: Proceedings of ACM Siggraph 2005 (2005)Google Scholar
  13. 13.
    Rosenholtz, R.: A Simple Saliency Model Predicts A Number of Motion Popout Phenomena. Vision Research 39, 3163–3175 (1999)CrossRefGoogle Scholar
  14. 14.
    Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic Thumbnail Corpping and its Effectiveness. In: ACM Proceedings of UIST 2003, pp. 11–19 (2003)Google Scholar
  15. 15.
    Navalpakkam, V., Itti, L.: Modeling The Influence of Task on Attention. Vision Research 45, 205–231 (2005)CrossRefGoogle Scholar
  16. 16.
    Frintrop, S., Nüchter, A., Surmann, H., Hertzberg, J.: Saliency-based Object Recognition in 3D Data. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004) (2004)Google Scholar
  17. 17.
    Hisada, M., Belyaev, A.G., Kunii, T.L.: A Skeleton-based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces. Computer Graphics Forum 21(4), 689–700 (2002)CrossRefGoogle Scholar
  18. 18.
    Frintrop, S., Nüchter, A., Surmann, H.: Visual Attention for Object Recognition in Spatial 3D Data. In: Proceedings of the 2nd International Workshop on Attention and Performance in Computational Vision, pp. 168–182 (2004)Google Scholar
  19. 19.
    Black, M., Sapiro, G., Marimont, D., Heeger, D.: Robust Anisotropic Diffusion. IEEE Trans. Image Processing 7(3), 421–432 (1998)CrossRefGoogle Scholar
  20. 20.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of IEEE International Conference on Computer Vision, pp. 902–907 (1995)Google Scholar
  21. 21.
    Agam, G., Tang, X.: A Sampling Framework for Accurate Curvature Estimation in Discrete Surfaces. IEEE Transactions on Visualization and Computer Graphics 11(5) (2005)Google Scholar
  22. 22.
    Goldfeather, J., Inaterrante, V.: A Novel Cubic-Order Algorithm for Approximating Principal Direction Vectors. ACM Transactions on Graphics 23(1), 45–63 (2004)CrossRefGoogle Scholar
  23. 23.
    Chen, K.: Adaptive Smoothing via Contextual and Local Discontinuities. IEEE Traction On Pattern Analysis and Machine Intelligence 27(10) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mao Zhihong
    • 1
  • Ma Lizhuang
    • 1
  • Zhao Mingxi
    • 1
  • Li Zhong
    • 1
  1. 1.Dept. of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations