Computing CM Points on Shimura Curves Arising from Cocompact Arithmetic Triangle Groups

  • John Voight
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


Let \(\Gamma \subset PSL_2({\mathbb R})\) be a cocompact arithmetic triangle group, i.e. a Fuchsian triangle group that arises from the unit group of a quaternion algebra over a totally real number field. The group Γ acts on the upper half-plane \({\mathfrak{H}}\); the quotient \(X_{\mathbb C}=\Gamma \backslash {\mathfrak{H}}\) is a Shimura curve, and there is a map \(j:X_{\mathbb C} \to {\mathbb P}^1_{\mathbb C}\). We algorithmically apply the Shimura reciprocity law to compute CM points \(j(z_D) \in {\mathbb P}^1_{\mathbb C}\) and their Galois conjugates so as to recognize them as purported algebraic numbers. We conclude by giving some examples of how this method works in practice.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsina, M., Bayer, P.: Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22. American Mathematical Society, Providence (2004)MATHGoogle Scholar
  2. 2.
    Bruinier, J.H.: Infinite products in number theory and geometry. Jahresber. Deutsch. Math.-Verein. 106(4), 151–184 (2004)MATHMathSciNetGoogle Scholar
  3. 3.
    Cohen, H.: A course in computational algebraic number theory. Graduate texts in mathematics, vol. 138. Springer, Berlin (1993)MATHGoogle Scholar
  4. 4.
    Eichler, M.: Über die Idealklassenzahl hypercomplexer Systeme. Math. Z. 43, 481–494 (1938)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Elkies, N.D.: Shimura curve computations. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 1–47. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Gross, B.H., Zagier, D.B.: On singular moduli. J. Reine Angew. Math. 355, 191–220 (1985)MATHMathSciNetGoogle Scholar
  7. 7.
    Katok, S.: Fuchsian groups. University of Chicago Press, Chicago (1992)MATHGoogle Scholar
  8. 8.
    Kudla, S.S., Rapoport, M., Yang, T.: Derivatives of Eisenstein series and Faltings heights. Compos. Math. 140(4), 887–951 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Reiner, I.: Maximal orders. Clarendon Press, Oxford (2003)MATHGoogle Scholar
  10. 10.
    Roberts, D.P.: Shimura curves analogous to X 0(N), Harvard Ph.D. thesis (1989)Google Scholar
  11. 11.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85(2), 58–159 (1967)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Kanô memorial lectures. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  13. 13.
    Takeuchi, K.: Arithmetic triangle groups. J. Math. Soc. Japan 29(1), 91–106 (1977)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24, 201–212 (1977)MATHGoogle Scholar
  15. 15.
    Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture notes in mathematics, vol. 800. Springer, Berlin (1980)MATHGoogle Scholar
  16. 16.
    Völklein, H.: Groups as Galois groups: an introduction. Cambridge studies in advanced mathematics, vol. 53. Cambridge University Press, New York (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Voight, J.: Quadratic forms and quaternion algebras: Algorithms and arithmetic, Ph.D. thesis, University of California, Berkeley (2005)Google Scholar
  18. 18.
    Zagier, D.: Traces of singular moduli. In: Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998). Int. Press Lect. Ser., pp. 211–244. Int. Press, Somerville (2002)Google Scholar
  19. 19.
    Zhang, S.-W.: Gross-Zagier formula for GL 2. Asian J. Math. 5(2), 183–290 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • John Voight
    • 1
  1. 1.Magma Group, School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations