The Mertens Conjecture Revisited

  • Tadej Kotnik
  • Herman te Riele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


Let M(x)=∑1 ≤ n ≤ x μ(n) where μ(n) is the Möbius function. The Mertens conjecture that \(|M(x)|/\sqrt{x}<1\) for all x>1 was disproved in 1985 by Odlyzko and te Riele [13]. In the present paper, the known lower bound 1.06 for \(\limsup M(x)/\sqrt{x}\) is raised to 1.218, and the known upper bound –1.009 for \(\liminf M(x)/\sqrt{x}\) is lowered to –1.229. In addition, the explicit upper bound of Pintz [14] on the smallest number for which the Mertens conjecture is false, is reduced from \(\exp(3.21\times10^{64})\) to \(\exp(1.59\times10^{40})\). Finally, new numerical evidence is presented for the conjecture that \(M(x)/\sqrt{x}=\Omega_{\pm}(\sqrt{\log\log\log x})\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bateman, P.T., Brown, J.W., Hall, R.S., Kloss, K.E., Stemmler, R.M.: Linear relations connecting the imaginary parts of the zeros of the zeta function. In: Atkin, A.O.L., Birch, B.J. (eds.) Computers in Number Theory, New York, pp. 11–19 (1971)Google Scholar
  2. 2.
    Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc. 85, 565–633 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Good, I.J., Churchhouse, R.F.: The Riemann hypothesis and pseudorandom features of the Möbius sequence. Math. Comp. 22, 857–861 (1968)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edn. Oxford at the Clarendon Press (1975)Google Scholar
  5. 5.
    Ingham, A.E.: On two conjectures in the theory of numbers. Amer. J. Math. 64, 313–319 (1942)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jurkat, W.B.: On the Mertens conjecture and related general Ω-theorems. In: Diamond, H. (ed.) Analytic Number Theory, Providence, pp. 147–158 (1973)Google Scholar
  7. 7.
    Jurkat, W., Peyerimhoff, A.: A constructive approach to Kronecker approximations and its application to the Mertens conjecture. J. reine angew. Math. 286/287, 322–340 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kotnik, T., van de Lune, J.: On the order of the Mertens function. Exp. Math. 13, 473–481 (2004)MATHGoogle Scholar
  9. 9.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mathematica, version 5.0, Wolfram Research, Inc., Champaign, IL (2003),
  11. 11.
    Mertens, F.: Über eine zahlentheoretische Funktion. Sitzungsberichte Akad. Wiss. Wien IIa 106, 761–830 (1897)MATHGoogle Scholar
  12. 12.
    Ng, N.: The distribution of the summatory function of the Möbius function. Proc. Lond. Math. Soc. 89, 361–389 (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. reine angew. Math. 357, 138–160 (1985)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pintz, J.: An effective disproof of the Mertens conjecture. Astérisque 147–148, 325–333 (1987)MathSciNetGoogle Scholar
  15. 15.
    PARI/GP, version 2.2.11 (alpha), Bordeaux (2005),
  16. 16.
    te Riele, H.J.J.: Computations concerning the conjecture of Mertens. J. reine angew. Math. 311/312, 356–360 (1979)CrossRefGoogle Scholar
  17. 17.
    Saffari, B.: Sur la fausseté de la conjecture de Mertens. Avec une observation par Paul Lévy. C. R. Acad. Sci. 271(A), 1097–1101 (1970)MATHMathSciNetGoogle Scholar
  18. 18.
    Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, Oxford (1951)Google Scholar
  19. 19.
    Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tadej Kotnik
    • 1
  • Herman te Riele
    • 2
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaSlovenia
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations