Ordinal Classification with Monotonicity Constraints

  • Tomáš Horváth
  • Peter Vojtáš
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4065)


Classification methods commonly assume unordered class values. In many practical applications – for example grading – there is a natural ordering between class values. Furthermore, some attribute values of classified objects can be ordered, too. The standard approach in this case is to convert the ordered values into a numeric quantity and apply a regression learner to the transformed data. This approach can be used just in case of linear ordering. The proposed method for such a classification lies on the boundary between ordinal classification trees, classification trees with monotonicity constraints and multi-relational classification trees. The advantage of the proposed method is that it is able to handle non-linear ordering on the class and attribute values. For the better understanding, we use a toy example from the semantic web environment – prediction of rules for the user’s evaluation of hotels.


Monotone monotonicity constraints classification ordinal data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Džeroski, S., Lavrač, N.: An introduction to inductive logic programming. In: Džeroski, S., Lavrač, N. (eds.) Relational data mining, pp. 48–73. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 145–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Horváth, T., Vojtáš, P.: Fuzzy induction via generalized annotated programs. In: 8th International Conference on Computational Intelligence (Fuzzy Days, Dortmund 2004), Dortmund, Germany, pp. 419–433. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Horváth, T., Sudzina, F., Vojtáš, P.: Mining rules from monotone classification measuring impact of information systems on business competitiveness. In: 6th International Conference on Information Technology for Balanced Automation Systems (BASYS 2004), Wien, Austria, pp. 451–458. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Horváth, T., Krajči, S., Lencses, R., Vojtáš, P.: An ILP model for a graded classification problem. J. Kybernetika 40(3), 317–332 (2004)Google Scholar
  6. 6.
    Leiva, H.A.: MRDTL: A multi-relational decision tree learning algorithm. M.Sc Thesis, Iowa State Univerity, Ames, Iowa (2002)Google Scholar
  7. 7.
    Potharst, R., Feelders, A.J.: Classification Trees for Problems with Monotonicity Constraints. SIGKDD Explorations 4(1), 1–10 (2002)CrossRefGoogle Scholar
  8. 8.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomáš Horváth
    • 1
  • Peter Vojtáš
    • 2
  1. 1.Institute of Computer Science, Faculty of SciencePavol Jozef Šafárik UniversityKošiceSlovakia
  2. 2.Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic

Personalised recommendations