Hierarchical Multi-resolution Finite Element Model for Soft Body Simulation

  • Matthieu Nesme
  • François Faure
  • Yohan Payan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


The complexity of most surgical models has not allowed interactive simulations on standard computers. We propose a new framework to finely control the resolution of the models. This allows us to dynamically concentrate the computational force where it is most needed.

Given the segmented scan of an object to simulate, we first compute a bounding box and then recursively subdivide it where needed. The cells of this octree structure are labelled with mechanical properties based on material parameters and fill rate. An efficient physical simulation is then performed using hierarchical hexaedral finite elements. The object surface can be used for rendering and to apply boundary conditions.

Compared with traditional finite element approaches, our method dramatically simplifies the task of volume meshing in order to facilitate the using of patient specific models, and increases the propagation of the deformations.


Virtual Reality Hierarchical Approach Local Frame Finite Element Computation Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, R., Lavallée, S., Burdea, G., Mosges, R.: Computer integrated surgery: Technology and clinical applications. MIT Press, Cambridge (1996)Google Scholar
  2. 2.
    Cotin, S., Delingette, H., Clement, J.M., Tassetti, V., Marescaux, J., Ayache, N.: Volumetric deformable models for simulation of laparoscopic surgery. In: Computer Assisted Radiology (1996)Google Scholar
  3. 3.
    Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space and time adaptive sampling. In: SIGGRAPH 2001 (2001)Google Scholar
  4. 4.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real time surgery simulation. Graph. Models (2003)Google Scholar
  5. 5.
    Etzmuß, O., Keckeisen, M., Straßer, W.: A Fast Finite Element Solution for Cloth Modelling. In: Proc. Pacific Graphics (2003)Google Scholar
  6. 6.
    Hauth, M., Straßer, W.: Corotational simulation of deformable solids. In: Proc. WSCG (2004)Google Scholar
  7. 7.
    Müller, M., Gross, M.: Interactive virtual materials. In: Proc. Graphics Interface (2004)Google Scholar
  8. 8.
    Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics (short papers), pp. 77–80 (2005)Google Scholar
  9. 9.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH 1998 (1998)Google Scholar
  10. 10.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. In: SIGGRAPH 1988 (1988)Google Scholar
  11. 11.
    Wu, X., Tendick, F.: Multigrid integration for interactive deformable body simulation. In: Cotin, S., Metaxas, D.N. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 92–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Debunne, G., Desbrun, M., Barr, A.H., Cani, M.P.: Interactive multiresolution animation of deformable models. In: Eurographics Workshop on Computer Animation and Simulation (1999)Google Scholar
  13. 13.
    Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshe. In: Proceedings of EG 2001 (2001)Google Scholar
  14. 14.
    Nikishkov, G.P.: Finite element algorithm with adaptive quadtree-octree mesh refinement. ANZIAM J. 46(E), C15–C28 (2005)MathSciNetGoogle Scholar
  15. 15.
    Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann Publishers, Inc., San Francisco (1996)Google Scholar
  16. 16.
    Gortler, S.J., Cohen, M.F.: Hierarchical and variational geometric modeling with wavelets. In: SI3D 1995 (1995)Google Scholar
  17. 17.
    Grinspun, E., Krysl, P., Schröder, P.: Charms: A simple framework for adaptive simulation. In: SIGGRAPH 2002 (2002)Google Scholar
  18. 18.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popovi, Z.: A multiresolution framework for dynamic deformations. In: SCA 2002 (2002)Google Scholar
  19. 19.
    Bathe, K.J.: Finite Element Procedures in Engeneering Analysis. Prentice-Hall, Inc., Englewood Cliffs (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthieu Nesme
    • 1
    • 2
  • François Faure
    • 1
  • Yohan Payan
    • 2
  2. 2.TIMC/IMAGGrenobleFrance

Personalised recommendations