Advertisement

An Introduction to GPU Accelerated Surgical Simulation

  • Thomas Sangild Sørensen
  • Jesper Mosegaard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)

Abstract

Modern graphics processing units (GPUs) have recently become fully programmable. Thus a powerful and cost-efficient new computational platform for surgical simulations has emerged. A broad selection of publications has shown that scientific computations obtain a significant speedup if ported from the CPU to the GPU. To take advantage of the GPU however, one must understand the limitations inherent in its design and devise algorithms accordingly. We have observed that many researchers with experience in surgical simulation find this a significant hurdle to overcome. To facilitate the transition from CPU- to GPU-based simulations, we review the most important concepts and data structures required to realise two popular deformable models on the GPU: the finite element model and the spring-mass model.

Keywords

Memory Bandwidth Conjugate Gradient Algorithm Graphic Hardware Texture Memory Implicit Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org/
  2. 2.
    Fernando, R.: GPU Gems, Part VI. Addison-Wesley, Reading (2004)Google Scholar
  3. 3.
    Pharr, M.: GPU Gems 2, Part IV-VI. Addison-Wesley, Reading (2005)Google Scholar
  4. 4.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware. State of the Art Reports, Eurographics, 21–51 (2005)Google Scholar
  5. 5.
    Strzodka, R., Doggett, M., Kolb, A.: Scientific Computation for Simulations on Programmable Graphics Hardware. Simulation Modelling Practice and Theory 13(8), 667–681 (2005)CrossRefGoogle Scholar
  6. 6.
    GPGPU course, Siggraph 2005, http://www.gpgpu.orgs/2005
  7. 7.
    IEEE Visualization 2005 tutorial (2005), http://www.gpgpu.org/vis2005/
  8. 8.
    OpenGL extensions specifications. ARB_vertex_program and ARB_fragment_program, http://oss.sgi.com/projects/ogl-sample/registry/index.html
  9. 9.
    Fernando, R., Kilgard, M.J.: The Cg Tutorial. Addison-Wesley, Reading (2003)Google Scholar
  10. 10.
    Rost, R.J.: OpenGL Shading Language. Addison-Wesley, Reading (2004)Google Scholar
  11. 11.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Hanrahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics, Siggraph 23(3), 777–786 (2003)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Möller, T.A., Haines, E.: Real-Time Rendering. A K Peters (2002)Google Scholar
  14. 14.
    Harris, M.J., Baxter III, V., Scheuermann, T., Lastra, E.: Simulation of Cloud Dynamics on Graphics Hardware. In: Siggraph/Eurographics Workshop On Graphics Hardware 2003, pp. 92–101 (2003)Google Scholar
  15. 15.
    Buck, I., Fatahalian, K., Hanrahan, P.: GPUBench: Evaluating GPU performance for Numerical and Scientific Application. In: General Purpose Computing on Graphics Processors, ACM Workshop 2004, p. C-20 (2004)Google Scholar
  16. 16.
    Dongarra, J.: The Linpack Benchmark Report, http://www.netlib.org/benchmark/performance.ps
  17. 17.
    Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: Topology, geometry and deformation. Image and Vision Computing 19(14), 1023–1040 (2001)CrossRefGoogle Scholar
  18. 18.
    Gibson, S.F.F., Mirtich, B.: A Survey of Derformable Modeling in Computer Graphics. Technical Report, Mitsubishi Electric Research Lab.Google Scholar
  19. 19.
    Bro-Nielsen, M., Cotin, S.: Real-time Volumetric Deformable Models for Surgeyr Simulation using Finite Elements and Condensation. In: Computer Grahics Forum, Eurographics 1996, vol. 15, pp. 57–66 (1996)Google Scholar
  20. 20.
    Cotin, S., Delingette, H., Ayache, N.: A Hybrid Elastic Model Allowing Real-Time Cutting, Deformations and Force-Feedback for surgery Training and Simulation. The Visual Computer 16(8), 437–452 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Liu, A., Tendick, F., Cleary, K., Kaufmann, C.: A Survey of Surgical Simulation: Applications, Technology, and Education. Presence 12(6), 599–614 (2003)CrossRefGoogle Scholar
  22. 22.
    Szekely, G., Brechbuhler, C., Hutter, R., Rhomberg, A., Schmid, P.: Modelling of Soft Tissue Deformation for Laparoscopic Surgery Simulation. Medical Image Analysis 4, 57–66 (2000)CrossRefGoogle Scholar
  23. 23.
    Thompson, C., Hahn, C., Oskin, M.: Using Modern Graphics Architectures for General-Purpose Computing: A Framework and Analysis. In: 35th IEEE/ACM International Symposium on Micro Architecture 2002, pp. 306–317 (2002)Google Scholar
  24. 24.
    Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.: An extended set of FORTRAN basic linear algebra subprograms. ACM Transactions on Mathematical Software 14, 1–17 (1988)zbMATHCrossRefGoogle Scholar
  25. 25.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics (1999)Google Scholar
  26. 26.
    Krueger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Transactions on Graphics, Siggraph 22(3), 908–916 (2003)CrossRefGoogle Scholar
  27. 27.
    Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics, Siggraph 22(3), 917–924 (2003)CrossRefGoogle Scholar
  28. 28.
    Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU algorithms for matrix-matrix multiplication. In: ACM Siggraph/Eurographics Conference on Graphics Hardware 2004, pp. 133–137 (2004)Google Scholar
  29. 29.
    Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware. In: ACM/IEEE conference on Supercomputing 2005, p. 3 (2005)Google Scholar
  30. 30.
    Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys, G.: A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware. In: ACM Siggraph/Eurographics Conference on Graphics Hardware 2003, pp. 102–111 (2003)Google Scholar
  31. 31.
    Rumpf, M., Strzodka, R.: Using Graphics Cards for Quantized FEM Computations. IASTED Visualization, Imaging and Image Processing, 193–202 (2001)Google Scholar
  32. 32.
    Wu, W., Heng, P.A.: A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting. Computer Animation and Virtual Worlds 15, 219–227 (2004)CrossRefGoogle Scholar
  33. 33.
    Dummer, J.: A Simple Time-Corrected Verlet Integration Method, http://www.gamedev.net/reference/programming/features/verlet/
  34. 34.
    Green, S.: Cloth Simulation on the GPU, http://developer.nvidia.com/object/demo_cloth_simulation.html
  35. 35.
    Mosegaard, J., Sørensen, T.S.: GPU accelerated surgical simulators for Complex Morphology. IEEE Virtual Reality, 147–153 (2005)Google Scholar
  36. 36.
    Sørensen, T.S., Mosegaard, J.: Haptic Feedback for the GPU-based Surgical Simulator. In: Studies in Health Technology and Informatics, 14th Medicine Meets Virtual Reality, vol. 119, pp. 523–528 (2006)Google Scholar
  37. 37.
    Georgii, J., Echtler, F., Westermann, R.: Interactive Simulation of Deformable Bodies on GPUs. Simulation and Visualisation, 247–258 (2005)Google Scholar
  38. 38.
    Georgii, J., Westermann, R.: Mass-Spring Systems on the GPU. Simulation Modelling Practice and Theory 13(8), 693–702 (2005)CrossRefGoogle Scholar
  39. 39.
    Mosegaard, J., Sørensen, T.S.: Real-time Deformation of Detailed Geometry Based on Mappings to a Less Detailed Physical Simulation on the GPU. In: Immersive Projection Technology & Eurographics Virtual Environments Workshop 2005, pp. 105–110 (2005)Google Scholar
  40. 40.
    Govindaraju, N.K., Lin, M., Manocha, D.: Quick-CULLIDE: Fast Inter- and Intra-Object Collision Culling using Graphics Hardware. IEEE Virtual Reality, 59–66 (2005)Google Scholar
  41. 41.
    Wong, W.S.-K., Baciu, G.: GPU-based intrinsic collision detection for deformable surfaces. Computer Animation and Virtual Worlds 16, 153–161 (2005)CrossRefGoogle Scholar
  42. 42.
    Choi, Y.-J., Kim, Y.J., Kim, M.-H.: Rapid pairwise intersection tests using programmable GPUs. The Visual Computer 22, 80–89 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Sangild Sørensen
    • 1
  • Jesper Mosegaard
    • 2
  1. 1.Centre for Advanced Visualisation and Interaction 
  2. 2.Department of Computer ScienceUniversity of AarhusDenmark

Personalised recommendations