Abstract

Among biometrics such as face, fingerprint, iris and voice recognition, iris recognition system has been in the limelight for high security applications. Until now, most researches have been studied for iris identification algorithm and iris camera system, etc. But, there has been little researched for fake iris (such as printed, photographed or artificial iris, etc) detection and its importance has been much emphasized, recently. To overcome the problems of previous fake iris detection researches, we propose the new method of checking the hippus movement (the dilation/contraction of pupil size) and the change of iris code in local iris area by visible light in this paper.

Keywords

Iris Recognition Fake Iris Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daugman, J.G.: High confidence visual recognition of personals by a test of statistical independence. IEEE Trans. Pattern Anal. Machine Intell. 15(11), 1148–1160 (1993)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Jack, K.: Video Demystified. Harris (1996)Google Scholar
  4. 4.
    Jain, A.K.: Biometrics: Personal Identification in Networked Society. Kluwer academic publishers, Dordrecht (1998)Google Scholar
  5. 5.
    Smart Cards and Biometrics in Privacy-Sensitve Secure Personal Identification Systems. A Smart Card Alliance White Paper (May 2002)Google Scholar
  6. 6.
    Jain, R.: Machine Vision. McGraw-Hill International Edition, New York (1995)Google Scholar
  7. 7.
    Mansfield, T., et al.: Biometric Product Testing Final Report, Draft 0.6, National Physical Laboratory (March 2001)Google Scholar
  8. 8.
    Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers. McGraw-Hill International Editions, New York (1989)Google Scholar
  9. 9.
    Gonzalez, R.C., et al.: Digital Image Processing. Addison-Wesley, Reading (1992)Google Scholar
  10. 10.
    Ioammou, D., Huda, W., Laine, A.F.: Circle Recognition through a 2D Hough transform and Radius Histogramming. Image and Vision Computing 17, 15–26 (1999)CrossRefGoogle Scholar
  11. 11.
    Park, K.R., Lee, J.J., Kim, J.H.: Facial and Eye Gaze Detection. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 368–376. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Park, K.R., et al.: Gaze Point Detection by Computing the 3D Positions and 3D Motions of Face. IEICE Trans. Inf. & Syst. E.83-D(4), 884–894 (2000)Google Scholar
  13. 13.
    Park, K.R.: Gaze Detection by Estimating the Depth and 3D Motions of Facial Features in Monocular Images. IEICE Trans. Fund. E.82-A(10), 2274–2284 (1999)Google Scholar
  14. 14.
    Chapra, S.C., et al.: Numerical Methods for Engineers. McGraw-Hill, New York (1989)Google Scholar
  15. 15.
  16. 16.
    Daugman, J.: Demodulation by complex-valued wavelets for stochastic pattern recognition. Int’l Journal of Wavelets, Multi-resolution and Information Processing 1(1), 1–17 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Vogel, et al.: Optical Properties of Human Sclera and Their Consequences for Trans-scleral Laser Applications. Lasers in Surgery and Medicine 11(4), 331–340 (1991)CrossRefGoogle Scholar
  18. 18.
    Deng, J., et al.: Region-based Template Deformation and Masking for Eye Feature Extraction and Description. Pattern Recognition 30(3), 403–419 (1997)CrossRefGoogle Scholar
  19. 19.
    Kee, G., Byun, Y., Lee, K., Lee, Y.: Improved Technique for an Iris Recognition System with High Performance. In: AI 2001: Advances in Artificial Intelligence, pp. 177–188 (2001)Google Scholar
  20. 20.
    Mallet, S.G.: A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(4), 674–693 (1989)CrossRefGoogle Scholar
  21. 21.
    Learned, R.E., Karl, W.C., Willsky, A.S.: Wavelet Packet based on Transient Signal Classification. In: Proc. of IEEE Conference on Time Scale and Time Frequency Analysis, pp. 109–112 (1992)Google Scholar
  22. 22.
    Jang, J., Park, K.R., Son, J., Lee, Y.: Multi-unit Iris Recognition System by Image Check Algorithm. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 450–457. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Vapnik: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  24. 24.
    Vapnik: Statistical Learning Theory. Wiley-Interscience publication, Chichester (1998)MATHGoogle Scholar
  25. 25.
    Saunders: Support Vector Machine User Manual, RHUL, Technical Report (1998) Google Scholar
  26. 26.
    Daugman, J.: Biometric Decision Landscape, Technical Report No. TR482, University of Cambridge Computer Laboratory (2000)Google Scholar
  27. 27.
    Matsushita: Iris Image Capturing Device and Iris Image Authentication Device, Japanese Patent (Issued Number : 2002-247529) Google Scholar
  28. 28.
    Lee, E.C., Park, K.R., Kim, J.H.: Fake Iris Detection by Using Purkinje Image. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 397–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Park, K.R.: New automated iris image acquisition method. Applied Optics 44(5), 713–734 (2005)CrossRefGoogle Scholar
  30. 30.
    Ma, L., et al.: Personal Identification Based on Iris Texture Analysis. IEEE Trans. on PAMI 25(12), 1519–1533 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kang Ryoung Park
    • 1
  1. 1.Division of Media Technology, Biometrics Engineering Research CenterSangmyung UniversitySeoulRepublic of Korea

Personalised recommendations