Automatic Control of Simple Language in Web Pages

  • Constantin Jenge
  • Sven Hartrumpf
  • Hermann Helbig
  • Rainer Osswald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4061)


The use of simple and easy to understand language is an essential requirement for web documents to be accessible by people with cognitive or reading disabilities. We present an architecture that scores the readability of textual content automatically and also provides hints about possible obstacles to readability in the given text. Our approach is based on a natural language processing framework that supports all levels of linguistic analysis, ranging from the morphological analysis of words to the semantic analysis of sentences and texts.


Noun Phrase Natural Language Processing Reading Disability Basic Indicator Linguistic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clahsen, H.: Linguistic perspectives on morphological processing (Unpublished, 2004)Google Scholar
  2. 2.
    Clifton, C., Ferreira, F.: Discourse structure and anaphora: Some experimental results. In: Coltheart, M. (ed.) Attention and Performance, vol. 12, pp. 777–793. Erlbaum, Hillsdale (1987)Google Scholar
  3. 3.
    Collins-Thompson, K., Callan, J.: Predicting reading difficulty with statistical language models. Journal of the American Association for Information Sciences and Technology 56(13), 1448–1462 (2005)CrossRefGoogle Scholar
  4. 4.
    Daneman, M., Carpenter, P.A.: Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior 19, 450–466 (1980)CrossRefGoogle Scholar
  5. 5.
    Dickes, P., Steiwer, L.: Ausarbeitung von Lesbarkeitsformeln für die deutsche Sprache. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie 9, 20–28 (1977)Google Scholar
  6. 6.
    Duffy, T.M.: Readability formulas: What’s the use? In: Duffy, T.M., Waller, R. (eds.) Designing Usable Texts, pp. 113–143. Academic Press, Orlando, Florida (1985)Google Scholar
  7. 7.
    Flesch, R.: A new readability yardstick. Journal of Applied Psychology 32, 221–233 (1948)CrossRefGoogle Scholar
  8. 8.
    Gibson, E.A.F.: A Computational Theory of Human Linguistic Processing: Memory Limitations and Processing Breakdown. PhD thesis, Carnegie Mellon University, Pittsburgh, Doctoral dissertation (Unpublished, 1991)Google Scholar
  9. 9.
    Gibson, E.A.F.: Linguistic complexity: Locality of syntactic dependencies. Cognition 68, 1–76 (1998)CrossRefGoogle Scholar
  10. 10.
    Gibson, E.A.F., Pearlmutter, N.: Constraints on sentence processing. Trends in Cognitive Sciences 2(7), 262–268 (1998)CrossRefGoogle Scholar
  11. 11.
    Halliday, M.A.K., Hassan, R.: Coherence in English. Longman, London (1976)Google Scholar
  12. 12.
    Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere Verlag, Osnabrück, Germany (2003)Google Scholar
  13. 13.
    Hartrumpf, S., Helbig, H., Osswald, R.: The semantically based computer lexicon HaGenLex – Structure and technological environment. Traitement automatique des langues 44(2), 81–105 (2003)Google Scholar
  14. 14.
    Helbig, H.: Knowledge Representation and the Semantics of Natural Language. Springer, Berlin (2006)zbMATHGoogle Scholar
  15. 15.
    Helbig, H., Hartrumpf, S.: Word class functions for syntactic-semantic analysis. In: Proceedings of the 2nd International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, pp. 312–317 (1997)Google Scholar
  16. 16.
    Jenge, C.: BenToWeb deliverable D6.1. Technical report, FernUniversität in Hagen (2005)Google Scholar
  17. 17.
    Kemper, S.: Life-span changes in syntactic complexity. Journal of Gerontology 42, 323–328 (1987)Google Scholar
  18. 18.
    Kimball, J.: Seven principles of surface structure parsing in natural language. Cognition 2, 15–47 (1973)CrossRefGoogle Scholar
  19. 19.
    Münte, T.F., Say, T., Clahsen, H., Schiltz, K., Kutas, M.: Decomposition of morphologically complex words in English. Cognitive Brain Research 7, 241–253 (1999)CrossRefGoogle Scholar
  20. 20.
    Schreuder, R., Grendel, M., Poulisse, N., Roelofs, A., van de Voort, M.: Lexical processing, morphological complexity and reading. In: Balota, D.A., d’Arcais, G.B.F., Rayner, K. (eds.) Comprehension Processes in Reading, pp. 125–141. Erlbaum, Hillsdale, New Jersey (1990)Google Scholar
  21. 21.
    Taylor, W.: Cloze procedure: A new tool for measuring readability. Journalism Quarterly 30, 415–433 (1953)Google Scholar
  22. 22.
    Wojcik, R.H., Hoard, J.E., Holzhauser, K.: The Boeing Simplified English Checker. In: Proceedings of the International Conference Human Machine Interaction and Artificial Intelligence in Aeronautics and Space, Toulouse, pp. 43–57 (1990)Google Scholar
  23. 23.
    Zwaan, R.A., Radvansky, G.A.: Situation models in language comprehension and memory. Psychological Bulletin 2(123), 162–185 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Constantin Jenge
    • 1
  • Sven Hartrumpf
    • 1
  • Hermann Helbig
    • 1
  • Rainer Osswald
    • 1
  1. 1.Intelligent Information and Communication Systems (IICS), Department of Computer ScienceFernUniversität in HagenGermany

Personalised recommendations