Spatiotemporal Reasoning for Smart Homes

  • Björn Gottfried
  • Hans W. Guesgen
  • Sebastian Hübner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4008)

Abstract

An important aspect in smart homes is the ability to reason about space and time. Certain things have to be done at certain times or at certain places, or they have to be done in relation with other things. For example, it might be necessary to switch on the lights in a room during the night and while a person is present in that room, but not if the room is the bedroom and the person is asleep. In this chapter, we discuss several AI-techniques for dealing with temporal and spatial knowledge in smart homes, mainly focussing on qualitative approaches to spatiotemporal reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pollack, M.E.: Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment. AI Magazine 26, 9–24 (2005)Google Scholar
  2. 2.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, pp. 1–35. Morgan Kaufmann, San Mateo (2002)Google Scholar
  3. 3.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  4. 4.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (1997)MATHGoogle Scholar
  5. 5.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)CrossRefMATHGoogle Scholar
  6. 6.
    Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proc. AAAI 1986, Philadelphia, Pennsylvania, pp. 377–382 (1986)Google Scholar
  7. 7.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras of allen’s interval algebra. J. ACM 50, 591–640 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Freundschuh, S., Egenhofer, M.: Human Conceptions of Spaces: Implications for GIS. Transactions in GIS 4, 361–375 (1997)Google Scholar
  10. 10.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proc. KR 1992, Cambridge, Massachusetts, pp. 165–176 (1992)Google Scholar
  11. 11.
    Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5, 161–174 (1991)CrossRefGoogle Scholar
  12. 12.
    Guesgen, H.: Spatial reasoning based on Allen’s temporal logic. Technical Report TR-89-049, ICSI, Berkeley, California (1989)Google Scholar
  13. 13.
    Tate, A., Hendler, J., Drummond, M.: A review of AI planning techniques. In: Allen, J., Hendler, J., Tate, A. (eds.) Readings in Planning. Morgan Kaufman, San Mateo (1990)Google Scholar
  14. 14.
    Gottfried, B.: Reasoning about intervals in two dimensions. In: Thissen, W., Wieringa, P., Pantic, M., Ludema, M. (eds.) IEEE Int. Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, Omnipress, pp. 5324–5332 (2004)Google Scholar
  15. 15.
    Kuipers, B.J., Levitt, T.: Navigation and mapping in large-scale space. AI Magazine 9, 25–43 (1988)Google Scholar
  16. 16.
    Murkerjee, A., Joe, G.: A qualitative model for space. In: 8th AAAI, pp. 721–727 (1990)Google Scholar
  17. 17.
    Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS (LNAI), vol. 804. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  18. 18.
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., Guesgen, H. W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS, vol. 3157, pp. 65–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Zimmermann, K., Freksa, C.: Qualitative Spatial Reasoning Using Orientation, Distance, and Path Knowledge. Applied Intelligence 6, 49–58 (1996)CrossRefGoogle Scholar
  20. 20.
    Frank, A.: Qualitative Spatial Reasoning about Distance and Directions in Geographic Space. Journal of Visual Languages and Computing 3, 343–373 (1992)CrossRefGoogle Scholar
  21. 21.
    Zimmermann, K.: Measuring without Distances: the delta calculus. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 59–68. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Clementini, E., Di Felice, P.: Approximate Topological Relations. International Journal of Approximate Reasoning 16(2), 173–204 (1997)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Cohn, A.G.: A hierarchical representation of qualitative shape based on connection and convexity. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 311–326. Springer, Heidelberg (1995)Google Scholar
  24. 24.
    Davis, E., Gotts, N.M., Cohn, A.G.: Constraint networks of topological relations and convexity. Constraints 4(3), 241–280 (1999)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Gottfried, B.: Tripartite line tracks qualitative curvature information. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 101–117. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Hazarika, S.M., Cohn, A.G.: Qualitative spatio-temporal continuity. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 92–107. Springer, Heidelberg (2001)Google Scholar
  27. 27.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)Google Scholar
  28. 28.
    Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A., Schubert, L., Shapiro, S. (eds.) Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning, pp. 131–141. Morgan Kaufmann, San Francisco (1998)Google Scholar
  29. 29.
    Combi, C., Rossato, R.: Temporal Constraints with Multiple Granularities in Smart Homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS, vol. 4008, pp. 35–56. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Guesgen, H.: Fuzzifying spatial relations. In: Matsakis, P., Sztandera, L. (eds.) Applying Soft Computing in Defining Spatial Relations, pp. 1–16. Physica, Heidelberg (2002) Google Scholar
  31. 31.
    Guesgen, H., Hertzberg, J., Philpott, A.: Towards implementing fuzzy Allen relations. In: Proc. ECAI 1994 Workshop on Spatial and Temporal Reasoning, Amsterdam, The Netherlands, pp. 49–55 (1994)Google Scholar
  32. 32.
    Guesgen, H.: When regions start to move. In: Proc. FLAIRS 2003, St. Augustine, Florida, pp. 465–469 (2003)Google Scholar
  33. 33.
    Hernández, D.: Qualitative vs. Fuzzy representations of spatial distance. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp. 389–398. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  34. 34.
    Freksa, C.: Fuzzy Systems in AI. In: Kruse, R., Gebhardt, J., Palm, R. (eds.) Fuzzy systems in computer science, Vieweg, Braunschweig (1994)Google Scholar
  35. 35.
    Bittner, T., Smith, B.: Granular Spatio-Temporal Ontologies. In: Guesgen, H.W., Mitra, D., Renz, J. (eds.) AAAI Symposium: Foundations and Applications of Spatio-Temporal Reasoning (FASTR), pp. 12–17. AAAI Press, Menlo Park (2003)Google Scholar
  36. 36.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 43, 2–32 (2001)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Björn Gottfried
    • 1
  • Hans W. Guesgen
    • 2
  • Sebastian Hübner
    • 1
  1. 1.Artificial Intelligence Group, Centre for Computing Technologies (TZI)Universität Bremen 
  2. 2.Computer Science DepartmentUniversity of Auckland 

Personalised recommendations