Video Mining with Frequent Itemset Configurations

  • Till Quack
  • Vittorio Ferrari
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4071)


We present a method for mining frequently occurring objects and scenes from videos. Object candidates are detected by finding recurring spatial arrangements of affine covariant regions. Our mining method is based on the class of frequent itemset mining algorithms, which have proven their efficiency in other domains, but have not been applied to video mining before. In this work we show how to express vector-quantized features and their spatial relations as itemsets. Furthermore, a fast motion segmentation method is introduced as an attention filter for the mining algorithm. Results are shown on real world data consisting of music video clips.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD, pp. 26–28 (1993)Google Scholar
  2. 2.
    Mobasher, B., et al.: Effective personalization based on association rule discovery from web usage data. Web Information and Data Management 9–15 (2001)Google Scholar
  3. 3.
    Tešić, J., Newsam, S., Manjunath, B.S.: Mining Image Datasets using Perceptual Association Rules. In: Proc. SIAM Sixth Workshop on Mining Scientific and Engineering Datasets in conjunction with SDM (2003)Google Scholar
  4. 4.
    Antonie, M., Zaïane, O., Coman, A.: Associative Classifiers for Medical Images. In: Zaïane, O.R., Simoff, S.J., Djeraba, C. (eds.) MDM/KDD 2002 and KDMCD 2002. LNCS, vol. 2797, pp. 68–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Sivic, J., Zisserman, A.: Video Data Mining Using Configurations of Viewpoint Invariant Regions. IEEE CVPR 1, 488–495 (2004)Google Scholar
  6. 6.
    Osian, M., Van Gool, L.: Video shot characterization. Mach. Vision Appl. 15(3), 172–177 (2004)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: Scale and Affine invariant interest point detectors. IJCV 1(60), 63–86 (2004)CrossRefGoogle Scholar
  8. 8.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)Google Scholar
  9. 9.
    Lowe, D.: Distinctive image features from scale invariant keypoints. IJCV 2(60), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Leibe, B., Schiele, B.: Interleaved Object Categorization and Segmentation. In: Proc. British Machine Vision Conference (BMVC 2003) (2003)Google Scholar
  11. 11.
  12. 12.
    Webb, A.: Statistical Pattern Recognition. Wiley, Chichester (2003)Google Scholar
  13. 13.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Chichester (1990)Google Scholar
  14. 14.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. ICCV (2003)Google Scholar
  15. 15.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  16. 16.
    Tan, P., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proc. ACM SIGKD (2002)Google Scholar
  17. 17.
    Minogue, K., Gondry, M.: Come Into My World. EMI (2002)Google Scholar
  18. 18.
    Minogue, K., Shadforth, D.: Can’t Get You Out Of My Head. EMI (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Till Quack
    • 1
  • Vittorio Ferrari
    • 2
  • Luc Van Gool
    • 1
  1. 1.ETH Zurich 
  2. 2.LEAR – INRIA Grenoble 

Personalised recommendations