Interactive Experiments in Object-Based Retrieval

  • Sorin Sav
  • Gareth J. F. Jones
  • Hyowon Lee
  • Noel E. O’Connor
  • Alan F. Smeaton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4071)


Object-based retrieval is a modality for video retrieval based on segmenting objects from video and allowing end-users to use these objects as part of querying. In this paper we describe an empirical TRECVid-like evaluation of object-based search, and compare it with a standard image-based search into an interactive experiment with 24 search topics and 16 users each performing 12 search tasks on 50 hours of rushes video. This experiment attempts to measure the impact of object-based search on a corpus of video where textual annotation is not available.


Search Task Query Image Interactive Experiment Video Object Video Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oomoto, E., Tanaka, K.: Ovid: Design and implementation of a video-object database system. IEEE Transactions on Knowledge and Data Engineering, 5(4) (1993)Google Scholar
  2. 2.
    Smeaton, A.F., Browne, P.: A Usage Study of Retrieval Modalities for Video Shot Retrieval. Information Processing and Management (in press, 2006)Google Scholar
  3. 3.
    Hauptmann, A., Christel, M.: Successful Approaches in the TREC Video Retrieval Evaluations. In: Proceedings of ACM Multimedia (2004)Google Scholar
  4. 4.
    Sav, S., Lee, H., Smeaton, A.F., O’Connor, N.E., Murphy, N.: Using Video Objects and Relevance Feedback in Video Retrieval. In: Proceedings of the SPIE Conference on Multimedia Systems and Applications VIII, Boston, Mass (November 2005)Google Scholar
  5. 5.
    TRECVid Evaluation, available at:
  6. 6.
    Hohl, L., Souvannavong, F., Merialdo, B., Huet, B.: Enhancing latent semantic analysis video object retrieval with structural information. In: ICIP 2004 - International Conference on Image Processing (2004)Google Scholar
  7. 7.
    Erol, B., Kossentini, F.: Shape-based retrieval of video objects. IEEE Transactions on Multimedia, 7(1) (2005)Google Scholar
  8. 8.
    Sivic, J., Shaffalitzky, F., Zisserman, A.: Efficient object retrieval from videos. In: EUSIPCO 2004 - European Signal Processing Conference (2004)Google Scholar
  9. 9.
    Liu, C.-B., Ahuja, N.: Motion based retrieval of dynamic objects in videos. In: Proceedings of ACM Multimedia (2004)Google Scholar
  10. 10.
    Smith, M., Khotanzad, A.: An object-based approach for digital video retrieval. In: ITCC 2004 - International Conference on Information Technology: Coding and Computing (2004)Google Scholar
  11. 11.
    Browne, P., Gurrin, C., Lee, H., McDonald, K., Sav, S., Smeaton, A.F., Ye, J.: Dublin City University Video Track Experiments for TREC 2001. In: TREC 2001 - Proceedings of the Text REtrieval Conference (2001)Google Scholar
  12. 12.
    Adamek, T., O’Connor, N.E.: A Multiscale Representation Method for Nonrigid Shapes With a Single Closed Contour. IEEE Transactions on Circuits and Systems for Video Technology 14(5) (May 2004)Google Scholar
  13. 13.
    Tuncel, E., Onural, L.: Utilization of the recursive shortest spanning tree algorithm for video-object segmentation by 2D affine motion modelling. IEEE Transactions on Circuits and Systems for Video Technology 10(5) (August 2000)Google Scholar
  14. 14.
    MPEG-7(xm) version 10.0, ISO/IEC/JTC1/SC29/WG11, N4062 (2001)Google Scholar
  15. 15.
    O’Connor, N.E., Cooke, E., LeBorgne, H., Blighe, M., Adamek, T.: The AceToolbox: Low-Level Audiovisual Feature Extraction for Retrieval and Classification. In: IEE European Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies, London, UK (2005)Google Scholar
  16. 16.
    The AceMedia project, available at:
  17. 17.
    Manjunath, B., Salembier, P., Sikora, T.: Introduction to MEPG: Multimedia Content Description Standard. Wiley, New York (2001)Google Scholar
  18. 18.
    The Google image search page, available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sorin Sav
    • 1
  • Gareth J. F. Jones
    • 1
  • Hyowon Lee
    • 1
  • Noel E. O’Connor
    • 1
  • Alan F. Smeaton
    • 1
  1. 1.Adaptive Information Cluster & Centre for Digital Video ProcessingDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations