Rules Dependencies in Backward Chaining of Conceptual Graphs Rules

  • Jean-François Baget
  • Éric Salvat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


Conceptual Graphs Rules were proposed as an extension of Simple Conceptual Graphs (CGs) to represent knowledge of form “if A then B”, where A and B are simple CGs. Optimizations of the deduction calculus in this KR formalism include a Backward Chaining that unifies at the same time whole subgraphs of a rule, and a Forward Chaining that relies on compiling dependencies between rules.

In this paper, we show that the unification used in the first algorithm is exactly the operation required to compute dependencies in the second one. We also combine the benefits of the two approaches, by using the graph of rules dependencies in a Backward Chaining framework.


Conceptual Graph Concept Type Graph Homomorphism Partial Projection Conjunctive Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Baget, J.-F.: Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive Types for Efficient Projection Algorithms. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. JAIR 16, 425–465 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Baget, J.-F.: Improving the forward chaining algorithm for conceptual graphs rules. In: Proc. of KR2004, pp. 407–414. AAAI Press, Menlo Park (2004)Google Scholar
  5. 5.
    Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)Google Scholar
  6. 6.
    Chein, M., Mugnier, M.-L.: Types and Coreference in Simple Conceptual Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 303–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Coulondre, S., Salvat, E.: Piece resolution: Towards larger perspectives. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 179–193. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Mugnier, M.-L.: Knowledge Representation and Reasoning based on Graph Homomorphism. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 172–192. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996)zbMATHGoogle Scholar
  10. 10.
    Salvat, E.: Theorem proving using graph operations in the conceptual graphs formalism. In: Proc. of ECAI 1998, pp. 356–360 (1998)Google Scholar
  11. 11.
    Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainings of Graph Rules. In: ICCS 1996. LNCS (LNAI), vol. 1115, pp. 248–262. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Sowa, J.F.: Conceptual Graphs. IBM Journal of Research and Development (1976)Google Scholar
  13. 13.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-François Baget
    • 1
  • Éric Salvat
    • 2
  1. 1.INRIA Rhône-Alpes/LIRMM 
  2. 2.IMERIR 

Personalised recommendations