Simple Conceptual Graphs and Simple Concept Graphs

  • J. P. Aubert
  • J. -F. Baget
  • M. Chein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


Sowa’s Conceptual Graphs and Formal Concept Analysis have been combined into another knowledge representation formalism named Concept Graphs. In this paper, we compare Simple Conceptual Graphs with Simple Concept Graphs, by successively studying their different syntaxes, semantics, and entailment calculus. We show that these graphs are almost identical mathematical objects, have equivalent semantics, and similar inference mechanisms. We highlight the respective benefits of these two graph-based knowledge representation formalisms, and propose to unify them.


Bipartite Graph Contextual Model Generalization Rule Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baget, J.-F.: Représenter des connaissances et raisonner avec des hypergraphes: de la projection à la dérivation sous contraintes. PhD thesis, Université Montpellier II (November 2001)Google Scholar
  2. 2.
    Baget, J.-F.: Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive Types for Efficient Projection Algorithms. In: de Moor, et al. (eds.) [9], pp. 229–242Google Scholar
  3. 3.
    Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. JAIR 16, 425–465 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berge, C.: Graphes et hypergraphes, Dunod (1970)Google Scholar
  5. 5.
    Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)Google Scholar
  6. 6.
    Chein, M., Mugnier, M.-L.: Concept Types and Coreference in Simple Conceptual Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 303–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Dau, F.: Concept graphs without negations: Standardmodels and standardgraphs. In: de Moor, et al. (eds.) [9], pp. 243–256Google Scholar
  8. 8.
    Dau, F.: The Logic System of Concept Graphs with Negation(And its Relationship to Predicate Logic). LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ganter, B., de Moor, A., Lex, W. (eds.):Conceptual Structures for Knowledge Creation and Communication. LNCS, vol. 2746. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  10. 10.
    Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  12. 12.
    Guinaldo, O., Haemmerlé, O.: Kowledge Querying in the Conceptual Graph Model: the RAP Module. In: Mugnier, Chein [17], pp. 287–294Google Scholar
  13. 13.
    Hell, P., Nesetril, J.: Graphs and Homomorphisms, vol. 121. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kerdiles, G.: Saying it with Pictures: a logical landscape of conceptual graphs. PhD thesis, Univ. Montpellier II / Amsterdam (November 2001)Google Scholar
  15. 15.
    Mugnier, M.-L.: Knowledge Representation and Reasoning based on Graph Homomorphism. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 172–192. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996), available at: zbMATHGoogle Scholar
  17. 17.
    Mugnier, M.-L., Chein, M. (eds.): ICCS 1998. LNCS (LNAI), vol. 1453, p. 3. Springer, Heidelberg (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Prediger, S.: Simple concept graphs: A logic approach. In: Mugnier, Chein [17], pp. 225–239Google Scholar
  19. 19.
    Sowa, J.F.: Conceptual Graphs. IBM Journal of Research and Development (1976)Google Scholar
  20. 20.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  21. 21.
    Wermelinger, M.: Conceptual Graphs and First-Order Logic, pp. 323–337Google Scholar
  22. 22.
    Wille, R.: Conceptual graphs and formal context analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. P. Aubert
    • 1
  • J. -F. Baget
    • 2
  • M. Chein
    • 1
  1. 1.LIRMM 

Personalised recommendations