Revision is a method to deal with non-monotonic processes. It has been used in theory of truth as an answer to semantic paradoxes such as the liar, but the idea is universal and resurfaces in many areas of logic and applications of logic.

In this survey, we describe the general idea in the framework of pointer semantics and point out that beyond the formal semantics given by Gupta and Belnap, the process of revision itself and its behaviour may be the central features that allow us to model our intuitions about truth, and is applicable to a lot of other areas like belief, rationality, and many more.


Dependency Graph Belief Revision Belief State Propositional Variable Revision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo02]
    Bolander, T.: Self-Reference and Logic. Phi News 1, 9–44 (2002)Google Scholar
  2. [Bo003]
    Bolander, T.: Logical Theories for Agent Introspection, PhD thesis, Technical University of Denmark (2003)Google Scholar
  3. [Bo1FrHa98]
    Boutilier, C., Friedman, N., Halpern, J.Y.: Belief revision with unreliable observations. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI- 1998), Madison, Wisconsin, Menlo Park, July 26-30, pp. 127–134 (1998)Google Scholar
  4. [Ch03]
    Chapuis, A.: An application of circular definitions: Rational Decision, In: Löwe, B., Malzkorn, W., Räsch, T., (eds.), Foundations of the Formal Sciences II: Applications of Mathematical Logic in Philosophy and Linguistics, Rheinische Friedrich-Wilhelms-Universität Bonn, November 10-13, Dordrecht 2003 [Trends in Logic 17], pp. 47–54 (2000)Google Scholar
  5. [Co02]
    Cook, R.T.: Counterintuitive consequences of the revision theory of truth. Analysis 62, 16–22 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Co03]
    Cook, R.T.: Still counterintuitive: a reply to Kremer, M., Intuitive consequences of the revision theory of truth. Analysis 63, 257–261 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Fi03]
    Field, H.: A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic 32, 139–177 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Ga088]
    Gaifman, H.: Operational Pointer Semantics: Solution to Self-referential Puzzles I. In: Vardi, M. (ed.) Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA, March 1988, pp. 43–59. Morgan Kaufmann, San Francisco (1988)Google Scholar
  9. [Ga092]
    Gaifman, H.: Pointers to Truth. Journal of Philosophy 89, 223–261 (1992)CrossRefMathSciNetGoogle Scholar
  10. [Ga192]
    Galliers, J.R.: Autonomous belief revision and communication. In: [Gä92], pp. 220–246Google Scholar
  11. [Gä92]
    Gärdenfors, P. (ed.): Belief revision. Cambridge University Press, Cambridge (1992) (Cambridge Tracts in Theoretical Computer Science 29)Google Scholar
  12. [GuBe93]
    Gupta, A., Belnap, N.: The Revision Theory of Truth, Cambridge, MA (1993)Google Scholar
  13. [Ha0Le00]
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65, 567–604 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Ha199]
    Hansson, S.O.: A survey on non-prioritized belief revision. Erkenntnis 50, 413–427 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Ha1FeCaFa01]
    Hansson, S.O., Fermé, E.L., Cantwell, J., Falappa, M.A.: Credibility limited revision. Journal of Symbolic Logic 66, 1581–1596 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [He82a]
    Herzberger, H.G.: Naive Semantics and the Liar Paradox. Journal of Philosophy 79, 479–497 (1982)CrossRefGoogle Scholar
  17. [He82b]
    Herzberger, H.G.: Notes on Naive Semantics. Journal of Philosophical Logic 11, 61–102 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Kr003]
    Kremer, M.: Intuitive consequences of the revision theory of truth. Analysis 62, 330–336 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Kr102]
    Kreutzer, S.: Partial Fixed-Point Logic on Infinite Structures. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 337–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. [KüLöMöWe05]
    Kühnberger, K.-U., Löwe, B., Möllerfeld, M., Welch, P.: Comparing inductive and circular definitions: parameters, complexities and games. Studia Logica 81, 79–98 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Li97]
    Liberatore, P.: The complexity of iterated belief revision. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 276–290. Springer, Heidelberg (1996)Google Scholar
  22. [Li00]
    Liberatore, P.: The complexity of belief update. Artificial Intelligence 119, 141–190 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Lö01]
    Löwe, B.: Revision sequences and computers with an infinite amount of time. Journal of Logic and Computation 11, pp. 25–40 (2001); also In: Wansing, H. (ed.), Essays on Non-Classical Logic, Singapore 2001 [Advances in Logic 1], pp. 37–59Google Scholar
  24. [Lö03]
    Löwe, B.: Determinacy for infinite games with more than two players with preferences. ILLC Publication Series PP-2003-19Google Scholar
  25. [LöWe01]
    Löwe, B., Welch, P.D.: Set-Theoretic Absoluteness and the Revision Theory of Truth. Studia Logica 68, 21–41 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. [We01]
    Welch, P.D.: On Gupta-Belnap Revision Theories of Truth, Kripkean fixed points, and the Next Stable Set. Bulletin of Symbolic Logic 7, 345–360 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [We03a]
    Welch, P.D.: On Revision Operators. Journal of Symbolic Logic 68, 689–711 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [We03b]
    Welch, P.D.: Ultimate Truth vis à vis stable truth (preprint) (November 7, 2003)Google Scholar
  29. [Ya93]
    Yablo, S.: Paradox without self-reference. Analysis 53, 251–252 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benedikt Löwe
    • 1
  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations