A Pattern-Based Approach to Conceptual Clustering in FOL

  • Francesca A. Lisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4068)


This paper presents a novel approach to Conceptual Clustering in First Order Logic (FOL) which is based on the assumption that candidate clusters can be obtained by looking for frequent association patterns in data. The resulting method extends therefore the levelwise search method for frequent pattern discovery. It is guided by a reference concept to be refined and returns a directed acyclic graph of conceptual clusters, possibly overlapping, that are subconcepts of the reference one. The FOL fragment chosen is \(\mathcal{AL}\)-log, a hybrid language that merges the description logic \(\mathcal{ALC}\) and the clausal logic Datalog. It allows the method to deal with both structural and relational data in a uniform manner and describe clusters determined by non-hierarchical relations between the reference concept and other concepts also occurring in the data. Preliminary results have been obtained on Datalog data extracted from the on-line CIA World Fact Book and enriched with a \(\mathcal{ALC}\) knowledge base.


Directed Acyclic Graph Frequent Pattern Description Logic First Order Logic Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May, 2001)Google Scholar
  2. 2.
    Bisson, G.: Conceptual Clustering in a First Order Logic Representation. In: Neumann, B. (ed.) ECAI 1992. Proceedings of the 10th European Conference on Artificial Intelligence, pp. 458–462. John Wiley & Sons, Chichester (1992)Google Scholar
  3. 3.
    Bournaud, I., Ganascia, J.-G.: Conceptual Clustering of Complex Objects: A Generalization Space based Approach. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 173–187. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Clerkin, P., Cunningham, P., Hayes, C.: Ontology discovery for the semantic web using hierarchical clustering. In: Stumme, G., Hotho, A., Berendt, B. (eds.) Working Notes of the ECML/PKDD-2001 Workshop on Semantic Web Mining, pp. 1–12 (2001)Google Scholar
  6. 6.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  7. 7.
    Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept Formation in Expressive Description Logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artificial Intelligence 40(1-3), 11–61 (1989)CrossRefGoogle Scholar
  9. 9.
    Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE Transactions on Knowledge and Data Engineering 11(5) (1999)Google Scholar
  10. 10.
    Ketterlin, A., Gançarski, P., Korczak, J.J.: Conceptual Clustering in Structured Databases: A Practical Approach. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pp. 180–185 (1995)Google Scholar
  11. 11.
    Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(1), 193–217 (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  17. 17.
    Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: an artificial intelligence approach, vol. I. Morgan Kaufmann, San Mateo, CA (1983)Google Scholar
  18. 18.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic generation of ontology for scholarly semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 726–740. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: a goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)CrossRefGoogle Scholar
  23. 23.
    Thomson, K., Langley, P.: Concept formation in structured domains. In: Fisher, D.H., Pazzani, M.J., Langley, P. (eds.) Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San Francisco (1991)Google Scholar
  24. 24.
    Vrain, C.: Hierarchical conceptual clustering in a first order representation. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 643–652. Springer, Heidelberg (1996)Google Scholar
  25. 25.
    Xiong, H., Steinbach, M., Ruslim, A., Kumar, V.: Characterizing pattern based clustering. Technical Report TR 05-015, Dept. of Computer Science and Engineering, University of Minnesota, Minneapolis, USA (2005)Google Scholar
  26. 26.
    Xiong, H., Steinbach, M., Tan, P.-N., Kumar, V.: Hicap: Hierarchical clustering with pattern preservation. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) Proc. of the 4th SIAM Int. Conference on Data Mining (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesca A. Lisi
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariItaly

Personalised recommendations