Lower Bounds for Complementation of ω-Automata Via the Full Automata Technique

  • Qiqi Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


In this paper, we first introduce a new lower bound technique for the state complexity of transformations of automata. Namely we suggest considering the class of full automata in lower bound analysis. Then we apply such technique to the complementation of nondeterministic ω-automata and obtain several lower bound results. Particularly, we prove an Ω((0.76n) n ) lower bound for Büchi complementation, which also holds for almost every complementation and determinization transformation of nondeterministic ω-automata, and prove an optimal (Ω(nk)) n lower bound for the complementation of generalized Büchi automata, which holds for Streett automata as well.


State Complexity Level Ranking Nondeterministic Automaton 10th STOC Muller Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bir93]
    Birget, J.C.: Partial orders on words, minimal elements of regular languages and state complexity (has online erratum). Theor. Comput. Sci 119(2), 267–291 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Büc62]
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of the International Congress on Logic, Method, and Philosophy of Science, Stanford University Press, pp. 1–12 (1962)Google Scholar
  3. [FKV04]
    Vardi, M.Y., Kupferman, O., Friedgut, E.: Büchi Complementation Made Tighter. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg (2004) refer to: CrossRefGoogle Scholar
  4. [HK02]
    Kutrib, M., Holzer, M.: State Complexity of Basic Operations on Nondeterministic Finite Automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [Jir05]
    Jirásková, G.: State complexity of some operations on binary regular languages. Theor. Comput. Sci 330(2), 287–298 (2005)zbMATHCrossRefGoogle Scholar
  6. [Kla91]
    Klarlund, N.: Progress measures for complementation of omega-automata with applications to temporal logic. In: 32th FOCS, pp. 358–367 (1991)Google Scholar
  7. [Kur94]
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)Google Scholar
  8. [KV01]
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [KV05a]
    Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic automata on infinite words. In: TACAS, pp. 206–221 (2005)Google Scholar
  10. [KV05b]
    Kupferman, O., Vardi, M.Y.: From complementation to certification. Theor. Comput. Sci 345(1), 83–100 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Löd99]
    Löding, C.: Optimal Bounds for Transformations of ω-Automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. [Mic88]
    Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)Google Scholar
  13. [RS59]
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  14. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: 29th FOCS, pp. 319–327 (1988)Google Scholar
  15. [Saf89]
    Safra, S.: Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of Science (1989)Google Scholar
  16. [SS78]
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: 10th STOC, pp. 275–286 (1978)Google Scholar
  17. [SVW85]
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic (extended abstract). In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 465–474. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  18. [Tho97]
    Thomas, W.: Languages, automata and logic. In: Handbook of Formal Languages, vol. 3, pp. 389–455. Springer-Verlag, Berlin (1997)Google Scholar
  19. [Var05]
    Vardi, M.Y.: Büchi complementation: A 40-year saga. In: The 9th Asian Logic Conference (2005)Google Scholar
  20. [VW94]
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Yu04]
    Yu, S.: State complexity: Recent results and open problems, Invited talk at ICALP 2004 Workshop in Formal Languages (slides online) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qiqi Yan
    • 1
  1. 1.BASICS Laboratory, Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations