Advertisement

Communication of Two Stacks and Rewriting

  • Juhani Karhumäki
  • Michal Kunc
  • Alexander Okhotin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)

Abstract

Rewriting systems working on words with a center marker are considered. The derivation is done by erasing a prefix or a suffix and then adding a prefix or a suffix. This can be naturally viewed as two stacks communicating with each other according to a fixed protocol. The paper systematically considers different cases of these systems and determines their expressiveness. Several cases are identified where very limited communication surprisingly yields universal computation power.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. Journal of Computer and System Sciences 8, 315–332 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Benois, M.: Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris Series A 269, 1188–1190 (1969)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Büchi, J.R.: Regular canonical systems. Arch. Math. Logic Grundlagenforsch 6, 91–111 (1964)zbMATHCrossRefGoogle Scholar
  4. 4.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)zbMATHGoogle Scholar
  5. 5.
    Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity. Theoretical Computer Science 327(3), 301–317 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  7. 7.
    Karhumäki, J., Kunc, M., Okhotin, A.: Computing by commuting. Theoretical Computer Science (to appear)Google Scholar
  8. 8.
    Kratko, M.I.: On a certain class of Post calculi. Soviet Math. Doklady 6, 1544–1545 (1965)zbMATHGoogle Scholar
  9. 9.
    Kunc, M.: The Power of Commuting with Finite Sets of Words. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 569–580. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Post, E.L.: Formal reductions of the general combinatorial decision problem. American Journal of Mathematics 65(2), 197–215 (1943)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sakarovitch, J.: Elements de théorie des automates, Vuibert (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juhani Karhumäki
    • 1
  • Michal Kunc
    • 1
  • Alexander Okhotin
    • 1
  1. 1.Department of MathematicsUniversity of Turku, Turku Centre for Computer ScienceTurkuFinland

Personalised recommendations