The Wadge Hierarchy of Deterministic Tree Languages

  • Filip Murlak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


We provide a complete description of the Wadge hierarchy for deterministically recognizable sets of infinite trees. In particular we give an elementary procedure to decide if one deterministic tree language is continuously reducible to another. This extends Wagner’s results on the hierarchy of ω-regular languages to the case of trees.


Directed Acyclic Graph Winning Strategy Tree Automaton Tree Language Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theoret. Comput. Sci. 290, 1253–1300 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Finkel, O.: Wadge Hierarchy of Omega Context Free Languages. Theoret. Comput. Sci. 269, 283–315 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156 (1995)Google Scholar
  4. 4.
    Kupferman, O., Safra, S., Vardi, M.: Relating Word and Tree Automata. 11th IEEE Symp. on Logic in Comput. Sci, 322–332 (1996)Google Scholar
  5. 5.
    Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    F. Murlak. The Wadge hierarchy of deterministic tree languages. Draft version,
  7. 7.
    Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 320–331. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoret. Comput. Sci. 303, 215–231 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic tree automata. In: Proc. WoLLiC 2004. Electronic Notes in Theoret. Comp. Sci, pp. 195–208 (2005)Google Scholar
  10. 10.
    Perrin, D., Pin, J.-E.: Infinite Words. Automata, Semigroups, Logic and Games. In: Pure and Applied Mathematics, vol. 141, Elsevier, Amsterdam (2004)Google Scholar
  11. 11.
    Selivanov, V.: Wadge Degrees of ω-languages of deterministic Turing machines. Theoret. Informatics Appl. 37, 67–83 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees. Theoret. Comput. Sci. 112, 413–418 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 663–674. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. J. Inf. Process. Cybern. EIK 13, 473–487 (1977)zbMATHGoogle Scholar
  15. 15.
    Wagner, K.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Filip Murlak
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityWarszawaPoland

Personalised recommendations