On Counting Homomorphisms to Directed Acyclic Graphs

  • Martin Dyer
  • Leslie Ann Goldberg
  • Mike Paterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)

Abstract

We give a dichotomy theorem for the problem of counting homomorphisms to directed acyclic graphs. H is a fixed directed acyclic graph. The problem is, given an input digraph G, to determine how many homomorphisms there are from G to H. We give a graph-theoretic classification, showing that for some digraphs H, the problem is in P and for the rest of the digraphs H the problem is #P-complete. An interesting feature of the dichotomy, absent from related dichotomy results, is the rich supply of tractable graphs H with complex structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. In: Proc. 44th IEEE Symposium on Foundations of Computer Science, pp. 562–572. IEEE, Los Alamitos (2003)CrossRefGoogle Scholar
  2. 2.
    Bulatov, A., Grohe, M.: The complexity of partition functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 294–306. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Structures & Algorithms 17, 260–289 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Even, S., Litman, A.: Layered cross product: a technique to construct interconnection networks. Networks 29, 219–223 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. (28), 57–104 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory Series B 48, 92–110 (1990)CrossRefGoogle Scholar
  7. 7.
    Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, Oxford (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Imrich, W., Klavžar, S.: Product graphs: structure and recognition. Wiley, New York (2000)MATHGoogle Scholar
  9. 9.
    Lovász, L.: Operations with structures. Acta. Math. Acad. Sci. Hung. 18, 321–328 (1967)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Dyer
    • 1
  • Leslie Ann Goldberg
    • 2
  • Mike Paterson
    • 2
  1. 1.School of ComputingUniversity of LeedsLeedsUK
  2. 2.Dept. of Computer ScienceUniversity of WarwickCoventryUK

Personalised recommendations