Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions

  • Martin Gairing
  • Burkhard Monien
  • Karsten Tiemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


In this work we study weighted network congestion games with player-specific latency functions where selfish players wish to route their traffic through a shared network. We consider both the case of splittable and unsplittable traffic. Our main findings are as follows:

  • For routing games on parallel links with linear latency functions without a constant term we introduce two new potential functions for unsplittable and for splittable traffic respectively. We use these functions to derive results on the convergence to pure Nash equilibria and the computation of equilibria. We also show for several generalizations of these routing games that such potential functions do not exist.

  • We prove upper and lower bounds on the price of anarchy for games with linear latency functions. For the case of unsplittable traffic the upper and lower bound are asymptotically tight.


Nash Equilibrium Social Cost Pure Strategy Latency Function Improvement Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proc. of the 37th ACM Symposium on Theory of Computing, pp. 57–66 (2005)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in Worst-Case Equilibria. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 41–52. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  5. 5.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Catoni, S., Pallottino, S.: Traffic Equilibrium Paradoxes. Transportation Science 25(3), 240–244 (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proc. of the 37th ACM Symposium on Theory of Computing, pp. 67–73 (2005)Google Scholar
  8. 8.
    Cominetti, R., Correa, J.R., Stier-Moses, N.E.: Network Games With Atomic Players. In: Proc. of the 33rd International Colloquium on Automata, Languages, and Programming (to appear, 2006)Google Scholar
  9. 9.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. In: Proc. of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 413–420 (2002): Also accepted to Journal of Algorithms as Special Issue of SODA 2002 (2002)Google Scholar
  10. 10.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash Equilibria for Scheduling on Restricted Parallel Links. In: Proc. of the 36th ACM Symposium on Theory of Computing, pp. 613–622 (2004)Google Scholar
  12. 12.
    Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium Conjecture. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Information. In: Proc. of the 17th ACM Symposium on Parallel Algorithms and Architectures, pp. 203–212 (2005)Google Scholar
  14. 14.
    Georgiou, C., Pavlides, T., Philippou, A.: Network Uncertainty in Selfish Routing. In: Proc. of the 20th IEEE International Parallel & Distributed Processing Symposium (2006)Google Scholar
  15. 15.
    Harsanyi, J.C.: Games with Incomplete Information Played by Bayesian Players, I, II, III. Management Science 14, 159–182, 320–332, 468–502 (1967)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khachiyan, L.G.: A Polynomial Time Algorithm in Linear Programming. Soviet Mathematics Doklady 20(1), 191–194 (1979)zbMATHGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative Networks. Telecommunication Systems 17(4), 385–409 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Economic Behavior 13(1), 111–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Monderer, D.: Multipotential Games. Unpublished manuscript (2005), available at
  21. 21.
    Nash, J.F.: Non-Cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Orda, A., Rom, R., Shimkin, N.: Competitive Routing in Multiuser Communication Networks. IEEE/ACM Transactions on Networking 1(5), 510–521 (1993)CrossRefGoogle Scholar
  23. 23.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)Google Scholar
  25. 25.
    Roughgarden, T., Tardos, É.: How Bad Is Selfish Routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proc. of the Institute of Civil Engineers, Pt. II, Vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Gairing
    • 1
  • Burkhard Monien
    • 1
  • Karsten Tiemann
    • 1
  1. 1.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany

Personalised recommendations