Advertisement

On the Bipartite Unique Perfect Matching Problem

  • Thanh Minh Hoang
  • Meena Mahajan
  • Thomas Thierauf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)

Abstract

In this note, we give tighter bounds on the complexity of the bipartite unique perfect matching problem, bipartite-UPM. We show that the problem is in C = L and in NL  ⊕ L, both subclasses of NC 2.

We also consider the (unary) weighted version of the problem. We show that testing uniqueness of the minimum-weight perfect matching problem for bipartite graphs is in \({\rm \bf L}^{{\rm \bf C_=L}}\) and in NL  ⊕ L.

Furthermore, we show that bipartite-UPM is hard for NL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. Journal of Research National Bureau of Standards 69, 125–130 (1965)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. In: 31st Symposium on Theory of Computing (STOC), pp. 70–78. ACM Press, New York (1999)Google Scholar
  7. 7.
    Hoang, T.M., Thierauf, T.: The complexity of the characteristic and the minimal polynomial. Theoretical Computer Science 295, 205–222 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random NC. Combinatorica 6, 35–48 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 496–503. Springer, Heidelberg (1985)Google Scholar
  11. 11.
    Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. Technical Report TR86-799, Cornell University (1986)Google Scholar
  12. 12.
    Lovasz, L.: On determinants, matchings and random algorithms. In: Budach, L. (ed.) Proceedings of Conference on Fundamentals of Computing Theory, pp. 565–574. Akademia-Verlag (1979)Google Scholar
  13. 13.
    Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–131 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rabin, M., Vazirani, V.: Maximum matchings in general graphs through randomization. Journal of Algorithms 10(4), 557–567 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27, 701–717 (1980)zbMATHCrossRefGoogle Scholar
  16. 16.
    Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)CrossRefGoogle Scholar
  18. 18.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thanh Minh Hoang
    • 1
  • Meena Mahajan
    • 2
  • Thomas Thierauf
    • 3
  1. 1.Abt. Theor. Inform.Universität UlmUlmGermany
  2. 2.Inst. of Math. SciencesChennaiIndia
  3. 3.Fak. Elektr. und Inform.Aalen UniversityAalenGermany

Personalised recommendations