Planar Crossing Numbers of Genus g Graphs

  • Hristo Djidjev
  • Imrich Vrt’o
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)


Pach and Tóth [14] proved that any n-vertex graph of genus g and maximum degree d has a planar crossing number at most c g dn, for a constant c > 1. We improve on this results by decreasing the bound to O(dgn), if g = o(n), and to O(g 2), otherwise, and also prove that our result is tight within a constant factor.


Planar Graph Euler Characteristic Outer Face Simple Cycle Planar Crossing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédy, E.: Crossing-free subgraphs. In: Theory and Practice of Combinatorics, North Holland Mathematical Studies 60, Annals of Discrete Mathematics 12, pp. 9–12. North-Holland, Amsterdam (1982)Google Scholar
  2. 2.
    Buchheim, C., Ebner, D., Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: Exact crossing minimization. In: 13th Intl. Symposium on Graph Drawing. LNCS, Springer, Berlin (2006)Google Scholar
  3. 3.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  4. 4.
    Cimikowski, R.: Algorithms for the fixed linear crossing number problem. Discrete Applied Mathematics 122, 93–115 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Djidjev, H.N.: A separator theorem. Compt. rend. Acad. bulg. Sci. 34, 643–645 (1981)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Djidjev, H.N.: Partitioning planar graphs with vertex costs: Algorithms and applications. Algorithmica 28(1), 51–75 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Djidjev, H.N., Venkatesan, S.: Planarization of graphs embedded on surfaces. In: 21st International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 62–72 (1995)Google Scholar
  8. 8.
    Even, G., Guha, S., Schieber, B.: Improved Approximations of Crossings in Graph Drawings and VLSI Layout Areas. SIAM J. Computing 32(1), 231–252 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. Algeraic and Discrete Methods 4, 312–316 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5, 391–407 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Glebsky, L.Y., Salazar, G.: The crossing numbert of cr(C m×C n) is as conjectured for n ≥ m(m + 1). J. Graph Theory 47, 53–72 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hliněný, P.: Crossing number is hard for cubic graphs. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 772–782. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Leighton, F.T.: Complexity Issues in VLSI. M.I.T. Press, Cambridge (1983)Google Scholar
  14. 14.
    Pach, J., Tóth, G.: Crossing number of toroidal graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 334–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16, 111–117 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sýkora, O., Vrt’o, I.: Optimal VLSI Layouts of the star graph and related networks. Integration the VLSI Journal 17, 83–94 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sýkora, O., Vrt’o, I.: Edge separators for graphs of bounded genus with applications. Theoretical Computer Science 112, 419–429 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Zarankievicz, K.: On a problem of P. Turán concerning graphs 41, 137–145 (1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hristo Djidjev
    • 1
  • Imrich Vrt’o
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Institute of MathematicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations