Advertisement

Approximating the Orthogonal Knapsack Problem for Hypercubes

  • Rolf Harren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)

Abstract

Given a list of d-dimensional cuboid items with associated profits, the orthogonal knapsack problem asks for a packing of a selection with maximal profit into the unit cube. We restrict the items to hypercube shapes and derive a \((\frac{5}{4}+\epsilon)\)-approximation for the two-dimensional case. In a second step we generalize our result to a \((\frac{2^d+1}{2^d}+\epsilon)\)-approximation for d-dimensional packing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions - inapproximability results and approximation schemes. Mathematics of Operations Research (to appear)Google Scholar
  2. 2.
    Caprara, A.: Packing 2-dimensional bins in harmony. In: FOCS: Proc. 43rd IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002)Google Scholar
  3. 3.
    Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal of Computing 9(4), 808–826 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Diedrich, F., Harren, R., Jansen, K., Thöle, R.: Approximation algorithms for a three-dimensional orthogonal knapsack problem (to appear 2006)Google Scholar
  5. 5.
    Fishkin, A.V., Gerber, O., Jansen, K.: On weighted rectangle packing with large resources. In: IFIP TCS 2004: 18th World Computer Congress, TC1 3rd Int. Conference on Theoretical Computer Science, pp. 237–250 (2004)Google Scholar
  6. 6.
    Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles into a square. In: MFCS 2005: Proc. 30th Int. Symposium on Mathematical Foundations of Computer Sience, pp. 352–363 (2005)Google Scholar
  7. 7.
    Freund, A., Naor, J.: Approximating the advertisement placement problem. Journal of Scheduling 7(5), 365–374 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3d-strip packing. In: SODA 2006: Proc. 17th ACM-SIAM symposium on Discrete algorithm, pp. 143–152 (2006)Google Scholar
  9. 9.
    Jansen, K., van Stee, R.: On strip packing with rotations. In: STOC 2005: Proc. 37th annual ACM symposium on Theory of Computing, pp. 755–761 (2005)Google Scholar
  10. 10.
    Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: SWAT 2004: Proc. 9th Scandinavian Workshop on Algorithm Theory, pp. 362–371 (2004)Google Scholar
  11. 11.
    Jansen, K., Zhang, G.: On rectangle packing: Maximizing benefits. In: SODA 2004: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 204–213 (2004)Google Scholar
  12. 12.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)zbMATHGoogle Scholar
  13. 13.
    Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem. MOR: Mathematics of Operations Research 25, 645–656 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.: Packing squares into a square. Journal of Parallel and Distributed Computing 10(3), 271–275 (1990)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rolf Harren
    • 1
    • 2
  1. 1.Graduate School of InformaticsKyoto UniversityJapan
  2. 2.Fachbereich InformatikUniversität DortmundGermany

Personalised recommendations