Advertisement

Expressive Power of Pebble Automata

  • Mikołaj Bojańczyk
  • Mathias Samuelides
  • Thomas Schwentick
  • Luc Segoufin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4051)

Abstract

Two variants of pebble tree-walking automata on binary trees are considered that were introduced in the literature. It is shown that for each number of pebbles, the two models have the same expressive power both in the deterministic case and in the nondeterministic case. Furthermore, nondeterministic (resp. deterministic) tree-walking automata with n + 1 pebbles can recognize more languages than those with n pebbles. Moreover, there is a regular tree language that is not recognized by any tree-walking automaton with pebbles. As a consequence, FO+posTC is strictly included in MSO over trees.

Keywords

Equivalence Class Binary Tree Expressive Power Current Node Regular Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Ullman Translations, J.D.: on a Context-Free Grammar. Information and Control 19(5), 439–475 (1971)CrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Bojańczyk and T. Colcombet. Tree-Walking Automata Cannot Be Determinized. TCS (to appear)Google Scholar
  3. 3.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular languages. In: STOC (2005)Google Scholar
  4. 4.
    Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Karhumäki, J., et al. (eds.) Jewels are forever, pp. 72–83. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Engelfriet, J., Hoogeboom, H.J.: Nested Pebbles and Transitive Closure. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree transducers. Acta Inf. 39(9), 613–698 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Engelfriet, J., Hoogeboom, H.-J., Van Best, J.-P.: Trips on Trees. Acta Cybern. 14(1), 51–64 (1999)MATHGoogle Scholar
  8. 8.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput. Syst. Sci. 66(1), 66–97 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-walking automata. In: IPL (to appear)Google Scholar
  10. 10.
    Comon, H., et al.: Tree Automata Techniques and Applications, available at http://www.grappa.univ-lille3.fr/tata

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikołaj Bojańczyk
    • 1
    • 2
  • Mathias Samuelides
    • 2
  • Thomas Schwentick
    • 3
  • Luc Segoufin
    • 4
  1. 1.Warsaw University 
  2. 2.LIAFAParis 7
  3. 3.Universität Dortmund 
  4. 4.INRIAParis 11

Personalised recommendations