The Deontic Component of Action Language \(n{\mathcal{C}}+\)

  • Marek Sergot
  • Robert Craven
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4048)

Abstract

The action language \({\mathcal{C}}+\) of Giunchiglia, Lee, Lifschitz, McCain, and Turner is a formalism for specifying and reasoning about the effects of actions and the persistence (‘inertia’) of facts over time. An ‘action description’ in \({\mathcal{C}}+\) defines a labelled transition system of a certain kind. \(n{\mathcal{C}}+\) (formerly known as \(({\mathcal{C}}+)^{++}\)) is an extended form of \({\mathcal{C}}+\) designed for representing normative and institutional aspects of (human or computer) societies. The deontic component of \(n{\mathcal{C}}+\) provides a means of specifying the permitted (acceptable, legal) states of a transition system and its permitted (acceptable, legal) transitions. We present this component of \(n{\mathcal{C}}+\), motivating its details with reference to some small illustrative examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153, 49–104 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
  3. 3.
    Akman, V., Erdoğan, S.T., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo World and the Traffic World in the language of the Causal Calculator. Artificial Intelligence 153, 105–140 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Artikis, A., Sergot, M.J., Pitt, J.: Specifying Electronic Societies with the Causal Calculator. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Artikis, A., Sergot, M.J., Pitt, J.: An executable specification of an argumentation protocol. In: Proc. 9th International Conference on Artificial Intelligence and Law (ICAIL 2003), pp. 1–11. ACM Press, Edinburgh (2003)CrossRefGoogle Scholar
  6. 6.
    Sergot, M.: (C  + ) + + : An action language for modelling norms and institutions. Technical Report 2004/8, Dept. of Computing, Imperial College, London (2004)Google Scholar
  7. 7.
    Sergot, M.J.: Modelling unreliable and untrustworthy agent behaviour. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 161–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Lomuscio, A., Sergot, M.J.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lomuscio, A., Sergot, M.J.: A formalisation of violation, error recovery, and enforcement in the bit transmission problem. J. of Applied Logic 2, 93–116 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic. Notre Dame J. of Formal Logic 29(1), 109–136 (1988)MATHCrossRefGoogle Scholar
  11. 11.
    Maibaum, T.: Temporal Reasoning over Deontic Specifications. In: Meyer, J.J.C., Wieringa, R.J. (eds.) Deontic Logic in Computer Science: Normative System Specification, pp. 141–202. John Wiley & Sons, Chichester (1993)Google Scholar
  12. 12.
    Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD thesis, Vrije Universiteit Amsterdam (2003)Google Scholar
  13. 13.
    Artikis, A., Pitt, J., Sergot, M.J.: Animated specification of computational societies. In: Castelfranchi, C., Johnson, W.L. (eds.) Proc. 1st International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), pp. 1053–1062. ACM Press, Bologna (2002)CrossRefGoogle Scholar
  14. 14.
    van der Torre, L.: Causal deontic logic. In: Proceedings of the Fifth Workshop on Deontic Logic in Computer Science (Deon 2000), pp. 351–367 (2000)Google Scholar
  15. 15.
    Carmo, J., Jones, A.J.I.: Deontic database constraints, violation and recovery. Studia Logica 57(1), 139–165 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Meyden, R.: The dynamic logic of permission. Journal of Logic and Computation 6(3), 465–479 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Belzer, M.: Legal reasoning in 3-D. In: Proc.1st International Conf.on Artificial Intelligence and Law, pp. 155–163. ACM Press, Boston (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marek Sergot
    • 1
  • Robert Craven
    • 1
  1. 1.Department of ComputingImperial College London 

Personalised recommendations