Estimation of the Evolution Speed for the Quasispecies Model: Arbitrary Alphabet Case

  • Vladimir Red’ko
  • Yuri Tsoy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


The efficiency of the evolutionary search in M. Eigen’s quasispecies model for the case of an arbitrary alphabet (the arbitrary number of possible string symbols) is estimated. Simple analytical formulas for the evolution rate and the total number of fitness function calculations are obtained. Analytical estimations are proved by computer simulations. It is shown that for the case of unimodal fitness function of λ-ary strings of length N, the optimal string can be found during (λ– 1)N generations under condition that the total number of fitness function calculations is of the order of [(λ– 1)N]2.


Genetic Algorithm Analytical Estimation Sequential Search White Ball Evolutionary Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI (1975), MIT Press, Boston (1992)Google Scholar
  2. 2.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  3. 3.
    Fogel, D.B.: Evolutionary Programming: an Introduction and Some Current Directions. Statistics and Computing 4, 113–130 (1994)CrossRefGoogle Scholar
  4. 4.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Boston (1992)zbMATHGoogle Scholar
  5. 5.
    Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley Inc., New York (1995)Google Scholar
  6. 6.
    De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral dissertation, University of Michigan, Ann Arbor, pp. 76–9381 (1975) (University Microfilms No. 76-9381) Google Scholar
  7. 7.
    Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, Noise and the Sizing of Populations. Complex Systems 6, 333–362 (1992)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Agrawal, S.: Understanding Interactions among Genetic Algorithm Parameters. In: Foundations of Genetic Algorithms 5, pp. 265–286. Morgan Kauffman, San Francisco (1999)Google Scholar
  9. 9.
    Muhlenbein, H.: How Genetic Algorithms Really Work I: Mutation and Hill-Climbing. In: Parallel Problem Solving from Nature, 2, pp. 15–25. Elsevier Science Publishing, Amsterdam (1992)Google Scholar
  10. 10.
    Jansen, T., Wegener, I.: On the Analysis of Evolutionary Algorithms - A Proof that Crossover Can Really Help. Technical Report CI-51/98, University of Dortmund, Dortmund (1998)Google Scholar
  11. 11.
    Eigen, M.: Selforganization of Matter and the Evolution of Biological Macromolecules. Springer, Berlin, Heidelberg, New York (1971)Google Scholar
  12. 12.
    Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, Berlin, Heidelberg, New York (1979)Google Scholar
  13. 13.
    Fosterling, H.D., Kuhn, H., Tews, K.H.: Computermodell zur Bildung Selbstorganisierender Systeme. Angewandte Chemie 84, 862–865 (1972)CrossRefGoogle Scholar
  14. 14.
    Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  15. 15.
    Red’ko, V.G., Tsoy, Y.R.: Estimation of the Efficiency of Evolution Algorithms. Doklady Mathematics (Doklady Akademii nauk) 72, 810–813 (2005)zbMATHGoogle Scholar
  16. 16.
    Red’ko, V.G.: Estimation of Evolution Rate in Eigen’s and Kuhn’s Models. Biofizika 31, 511–516 (1986) (in Russian) Google Scholar
  17. 17.
    Red’ko, V.G.: Spin Glasses and Evolution. Biofizika 35(5), 831–834 (1990) (in Russian), Red’ko, V.G.: Spinglass Model of Evolution. In: Heylighen, F., Joslyn, C., Turchin, V. (eds.): Principia Cybernetica Web (Principia Cybernetica, Brussels) (1998) (Short version of this paper is published), URL: Google Scholar
  18. 18.
    Karlin, S.: A First Course in Stochastic Processes. Academic Press, New York (1968)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vladimir Red’ko
    • 1
  • Yuri Tsoy
    • 2
  1. 1.Institute of Optical Neural TechnologiesRussian Academy of SciencesMoscowRussia
  2. 2.Computer Engineering DepartmentTomsk Polytechnic UniversityTomskRussia

Personalised recommendations