Advertisement

Isolines of Statistical Information Criteria for Relational Neuro-fuzzy System Design

  • Agata Pokropińska
  • Robert Nowicki
  • Rafał Scherer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

The paper concerns designing relational neuro-fuzzy systems as a multicriteria optimization problem. Relational neuro-fuzzy systems have additional relation making rules to have more flexible form. A method for designing neuro-fuzzy systems by using information criteria and criteria isolines is used to find the optimal relational system for a given problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuska, R.: Fuzzy Modeling For Control. Kluwer Academic Press, Boston (1998)Google Scholar
  2. 2.
    Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html+ Google Scholar
  3. 3.
    Branco, P.J.C., Dente, J.A.: A Fuzzy Relational identification Algorithm and its Application to Predict the Behaviour of a Motor Drive System. Fuzzy Sets and Systems 109, 343–354 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cpałka, K.: A Flexible Connectionist System. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 618–625. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Jang, R.J.-S., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997)Google Scholar
  6. 6.
    Nauck, D., Klawon, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley, Chichester (1997)Google Scholar
  7. 7.
    Nowicki, R., Pokropińska, A.: Information Criterions Applied to Neuro-Fuzzy Architectures Design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press, London (1989)zbMATHGoogle Scholar
  9. 9.
    Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14, 554–574 (2003)CrossRefGoogle Scholar
  10. 10.
    Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  11. 11.
    Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi triangular norms with applications to neuro fuzzy systems. IEEE Trans. on Fuzzy Systems 13, 140–151 (2005)CrossRefGoogle Scholar
  12. 12.
    Scherer, R., Rutkowski, L.: Neuro-Fuzzy Relational Systems. In: Proc. of 2002 International Conference on Fuzzy Systems and Knowledge Discovery, Singapore (CD-ROM), November 18-22 (2002)Google Scholar
  13. 13.
    Scherer, R., Rutkowski, L.: Connectionist Fuzzy Relational Systems. In: Hagamuge, S., Wang, L.P. (eds.) Studies in Computational Intelligence, Computational Intelligence for Modelling and Control, pp. 35–47. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Setness, M., Babuska, R.: Fuzzy Relational Classifier Trained by Fuzzy Clustering. IEEE Transactions on Systems, Man and Cybernetics 29(5), 619–625 (1999)CrossRefGoogle Scholar
  15. 15.
    Sugeno, M., Yasukawa, T.: A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on Fuzzy Systems 1(1), 7–31 (1993)CrossRefGoogle Scholar
  16. 16.
    Wang, L.-X.: Adaptive Fuzzy Systems And Control. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  17. 17.
    Wang, L., Yen, J.: Application of statistical information criteria for optimal fuzzy model construction. IEEE Transactions on Fuzzy Systems 6, 353–362 (1998)Google Scholar
  18. 18.
    Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. John Wiley Sons, Inc., Chichester (1994)Google Scholar
  19. 19.
    Yager, R.R., Filev, D.P.: On a Flexible Structure for Fuzzy Systems Models. In: Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Sets, Neural Networks, and Soft Computing, pp. 1–28. Van Nostrand Reinhold, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Agata Pokropińska
    • 1
  • Robert Nowicki
    • 2
    • 3
  • Rafał Scherer
    • 2
    • 3
  1. 1.Institute of Mathematics and Computer ScienceJan Długosz UniversityCzęstochowaPoland
  2. 2.Department of Computer EngineeringCzęstochowa University of TechnologyCzęstochowaPoland
  3. 3.Department of Artificial IntelligenceAcademy of Humanities and Economics in ŁódźŁódźPoland

Personalised recommendations