Self-stabilizing Algorithms for Graph Coloring with Improved Performance Guarantees

  • Adrian Kosowski
  • Łukasz Kuszner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


In the self-stabilizing model we consider a connected system of autonomous asynchronous nodes, each of which has only local information about the system. Regardless of the initial state, the system must achieve a desirable global state by executing a set of rules assigned to each node. The paper deals with the construction of a solution to graph coloring in this model, a problem motivated by code assignment in wireless networks.

A new method based on spanning trees is applied to give the first (to our knowledge) self-stabilizing algorithms working in a polynomial number of moves, which color bipartite graphs with exactly two colors. The complexity and performance characteristics of the presented algorithms are discussed for different graph classes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battiti, R., Bertossi, A.A., Bonucceli, M.A.: Assigning code in wireless networks: bounds and scaling properties. Wireless Networks 5, 195–209 (1999)CrossRefGoogle Scholar
  2. 2.
    Beauquier, J., Kumar Datta, A., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Exclusion and Definition Refinement. Chicago Journal of Theoretical Computer Science (2002)Google Scholar
  3. 3.
    Chachis, G.C.: If it walks like a duck: nanosensor threat assessment. In: Proc. SPIE, vol. 5090, pp. 341–347 (2003)Google Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Ghosh, S., Karaata, M.H.: A Self-Stabilizing Algorithm for Coloring Planar Graphs. Distributed Computing 7, 55–59 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)Google Scholar
  8. 8.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Fault Tolerant Algorithms for Orderings and Colorings. In: Proc.  IPDP 2004 (2004)Google Scholar
  9. 9.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing Vertex Coloring of Arbitrary Graphs. In: Proc. OPODIS 2000, pp. 55–70 (2000)Google Scholar
  10. 10.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87, 251–255 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hu, L.: Distributed code assignments for CDMA Packet Radio Network. IEEE/ACM Transactions on Networking 1, 668–677 (1993)CrossRefGoogle Scholar
  12. 12.
    Huang, S.T., Hung, S.S., Tzeng, C.H.: Self-stabilizing coloration in anonymous planar networks. Information Processing Letters 95, 307–312 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hung, K.W., Yum, T.S.: An efficient code assignment algorithm for multihop spread spectrum packet radio networks. In: Proc. GLOBECOM 1990, pp. 271–274 (1990)Google Scholar
  14. 14.
    Kosowski, A., Kuszner, Ł: A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Li, J., Blake, C., De Couto, D.S., Lee, H.I., Morris, R.: Capacity of Ad Hoc wireless networks. In: Proc. MobiCom 2001, pp. 61–69. ACM Press, New York (2001)Google Scholar
  16. 16.
    Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Information Sciences 69, 219–227 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adrian Kosowski
    • 1
  • Łukasz Kuszner
    • 1
  1. 1.Department of Algorithms and System ModelingGdańsk University of TechnologyPoland

Personalised recommendations