2D-to-3D X-Ray Breast Image Registration

  • Predrag R. Bakic
  • Frederic J. P. Richard
  • Andrew D. A. Maidment
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)


Digital breast tomosynthesis combines the advantages of digital mammography and 3D breast imaging. To facilitate the comparison of new tomosynthesis images with previous mammographic exams of the same woman, there is a need for a method to register a mammogram with tomo-synthetic images of the same breast; this is the focus of our paper. We have chosen to approach this multimodality registration problem by registering a mammogram with individual tomosynthesis source projection images. In this paper, we analyzed the results of registering an MLO mammogram to nine tomosynthesis source projection images of the same breast. On average, we were able to compensate 90 percent of the per-pixel intensity differences that existed between the two images before registration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., et al.: Digital Tomosynthesis in Breast Imaging. Radiology 205, 399–406 (1997)Google Scholar
  2. 2.
    Maidment, A.D.A., Albert, M., Conant, E.F.: Three-dimensional Imaging of Breast Calcifications. In: Proc. SPIE, vol. 3240, pp. 200–208 (1998)Google Scholar
  3. 3.
    Bakic, P., Richard, F.J.P., Maidment, A.D.A.: Registration of Mammograms and Breast Tomosynthesis Images. In: Proc. 8th Int. Workshop Digital Mammography, Manchester, UK (in press, 2006)Google Scholar
  4. 4.
    Boone, J.M., Kwan, A.L.C., Nelson, T.R., Shah, N., et al.: Performance Assessment of a Pendant-Geometry CT Scanner for Breast Cancer Detection. In: Proc. SPIE, vol. 5745, pp. 319–323 (2006)Google Scholar
  5. 5.
    Chan, H.P., Wei, J., Sahiner, B., Rafferty, E.A., Wu, T., Roubidoux, M.A., Moore, R.H., Kopans, D.B., Hadjiiski, L.M., Helvie, M.A.: Computer-aided Detection System for Breast Masses on Digital Tomosynthesis Mammograms: Preliminary Experience. Radiology 237, 1075–1080 (2005)CrossRefGoogle Scholar
  6. 6.
    Reiser, I., Nishikawa, R.M., Giger, M.L., Wu, T., Rafferty, E.A., Moore, R., Kopans, D.B.: Computerized Mass Detection for Digital Breast Tomosynthesis Directly from the Projection Images. Med. Phys. 33, 482–491 (2006)CrossRefGoogle Scholar
  7. 7.
    Carton, A.-K., Li, J.J., Albert, M., Chen, S.C., et al.: Quantification for Contrast-enhanced Digital Breast Tomosynthesis. In: Proc. SPIE, vol. 6142 (2006)Google Scholar
  8. 8.
    Richard, F.J.P., Cohen, L.: Non-rigid Image Registration with Free Boundary Constraints: Application to Mammography. Comp. Vis. Image Understanding 89, 166–1967 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bakic, P.R., Albert, M., Brzakovic, D., Maidment, A.D.A.: Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation. Med. Phys. 29, 2131–2139 (2002)Google Scholar
  10. 10.
    Richard, F.J.P., Bakic, P.R., Maidment, A.D.A.: Mammogram Registration: a Phantom-Based Evaluation of Mammographic Compression Effects. IEEE Trans. Med. Imag. 25, 188–197 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Predrag R. Bakic
    • 1
  • Frederic J. P. Richard
    • 2
  • Andrew D. A. Maidment
    • 1
  1. 1.University of PennsylvaniaPhiladelphia
  2. 2.Universite Paris 5ParisFrance

Personalised recommendations