Medical Image Registration Based on BSP and Quad-Tree Partitioning

  • A. Bardera
  • M. Feixas
  • I. Boada
  • J. Rigau
  • M. Sbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)

Abstract

This paper presents a study of image simplification techniques as a first stage to define a multiresolution registration framework. We propose here a new approach for image registration based on the partitioning of the source images in binary-space (BSP) and quad-tree structures. These partitioned images have been obtained with a maximum mutual information gain algorithm. Multimodal registration experiments with downsampled, BSP and quadtree partitioned images show an outstanding accuracy and robustness by using BSP images, since the grid effects are drastically reduced. The obtained results indicate that BSP partitioning can provide a suitable framework for multiresolution registration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)Google Scholar
  2. 2.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  3. 3.
    National Institutes of Health. Retrospective Image Registration Evaluation. Vanderbilt University, Nashville, TN, USA, Project Number 8R01EB002124-03, Principal Investigator J. Michael Fitzpatrick (2003)Google Scholar
  4. 4.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 986–1004 (2003)CrossRefGoogle Scholar
  5. 5.
    Rigau, J., Feixas, M., Sbert, M., Bardera, A., Boada, I.: Medical image segmentation based on mutual information maximization. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 135–142. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Studholme, C.: Measures of 3D Medical Image Alignment. PhD thesis, University of London, London, UK (August 1997)Google Scholar
  7. 7.
    Tsao, J.: Interpolation artifacts in multimodal image registration based on maximization of mutual information. IEEE Transactions on Medical Imaging 22, 854–864 (2003)CrossRefGoogle Scholar
  8. 8.
    Unser, M., Thévenaz, P.: Stochastic sampling for computing the mutual information of two images. In: Proceedings of the 5th International Workshop on Sampling Theory and Applications (SampTA 2003), Strobl, Austria, pp. 102–109 (May 2003)Google Scholar
  9. 9.
    Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology, Massachusetts, MA, USA (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Bardera
    • 1
  • M. Feixas
    • 1
  • I. Boada
    • 1
  • J. Rigau
    • 1
  • M. Sbert
    • 1
  1. 1.Institut d’Informàtica i AplicacionsUniversitat de GironaSpain

Personalised recommendations