Finite State approaches to Optimality Theory have had two goals. The earlier and less ambitious one was to compute the optimal output by compiling a finite state automaton for each underlying representation. Newer approaches aimed at realizing the OT-systems as FS transducers mapping any underlying representation to the corresponding surface form. After reviewing why the second one fails for most linguistically interesting cases, we use its ideas to accomplish the first goal. Finally, we present how this approach could be used in the future as a—hopefully cognitively adequate—model of the mental lexicon.


Optimality Theory Regular Expression Matching Approach Mental Lexicon Language Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albro, D.M.: Taking primitive Optimality Theory beyond the finite state. In: Eisner, Karttunen, J.L., Thériault, A. (eds.) Finite-State Phonology: Proc. of the 5th Workshop of SIGPHON, Luxembourg, pp. 57–67 (2000)Google Scholar
  2. 2.
    Anttila, A., Cho, Y.: Variation and change in optimality theory. Lingua 104(1-2), 31–56 (1998)CrossRefGoogle Scholar
  3. 3.
    Bíró, T.: Quadratic alignment constraints and finite state Optimality Theory. In: Proc. of the Workshop on FSMNLP, at EACL 2003, Budapest, pp. 119–126 (2003), ROA stands for Rutgers Optimality Archiver at
  4. 4.
    Bíró, T.: When the hothead speaks: Simulated Annealing Optimality Theory for Dutch fast speech. In: CLIN 2004, Leiden (2004)Google Scholar
  5. 5.
    Bíró, T.: How to define simulated annealing for optimality theory? In: Proc. of the 10th Conference on Formal Grammar and the 9th Meeting on Mathematics of Language, Edinburgh (August 2005)Google Scholar
  6. 6.
    Burzio, L.: Missing players: Phonology and the past-tense debate. Lingua 112, 157–199 (2002)CrossRefGoogle Scholar
  7. 7.
    Eisner, J.: Efficient generation in primitive Optimality Theory. In: Proc. of ACL 1997 and EACL-8, Madrid, pp. 313–320 (1997)Google Scholar
  8. 8.
    Eisner, J.: Directional constraint evaluation in Optimality Theory. In: Proc. of COLING 2000, Saarbrücken (2000)Google Scholar
  9. 9.
    Eisner, J.: Comprehension and compilation in Optimality Theory. In: Proc. of ACL 2002, Philadelphia (2002)Google Scholar
  10. 10.
    Ellison, T.M.: Phonological derivation in Optimality Theory. In: COLING 1994, Kyoto, pp. 1007–1013, Also: ROA-75 (1994)Google Scholar
  11. 11.
    Frank, R., Satta, G.: Optimality Theory and the generative complexity of constraint violability. Computational Ling. 24(2), 307–315 (1998)MathSciNetGoogle Scholar
  12. 12.
    Gerdemann, D., van Noord, G.: Approximation and exactness in finite state Optimality Theory. In: Eisner, J., Karttunen, L., Thériault, A. (eds.) SIGPHON 2000, Finite State Phonology (2000)Google Scholar
  13. 13.
    Jäger, G.: Gradient constraints in finite state OT: The unidirectional and the bidirectional case. ROA-479 (2002)Google Scholar
  14. 14.
    Johnson, D.C.: Formal Aspects of Phonological Description. Mouton, The Hague [etc.] (1972)Google Scholar
  15. 15.
    Karttunen, L.: The proper treatment of Optimality Theory in computational phonology. In: Finite-state Methods in NLP, Ankara, pp. 1–12 (1998)Google Scholar
  16. 16.
    Kuhn, J.: Processing optimality-theoretic syntax by interleaved chart parsing and generation. In: Proc. of ACL 2000, Hongkong, pp. 360–367 (2000)Google Scholar
  17. 17.
    Prince, A., Smolensky, P.: Optimality Theory, constraint interaction in generative grammar. RuCCS-TR-2, ROA Version: 8/2002 (1993)Google Scholar
  18. 18.
    Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generative Grammar. Blackwell, Malden (2004)CrossRefGoogle Scholar
  19. 19.
    Tesar, B., Smolensky, P.: Learnability in Optimality Theory. The MIT Press, Cambridge, London, England (2000)Google Scholar
  20. 20.
    Turkel, B.: The acquisition of optimality theoretic systems. m.s., ROA-11 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tamás Bíró
    • 1
  1. 1.Humanities ComputingUniversity of GroningenThe Netherlands

Personalised recommendations