Unsupervised Morphology Induction Using Morfessor

  • Mathias Creutz
  • Krista Lagus
  • Sami Virpioja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4002)


We present Morfessor, an unsupervised algorithm and software that induces a simple morphology of a natural language from a large corpus. Morfessor simultaneously builds a morph lexicon and represents the corpus with the induced lexicon using a probabilistic maximum a posteriori model.


Speech Recognition Machine Translation Automatic Speech Recognition Word Error Rate Unsupervised Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language from unannotated text. In: Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005), Espoo, Finland, pp. 106–113 (2005)Google Scholar
  2. 2.
    Goldsmith, J.: Unsupervised learning of the morphology of a natural language. Computational Linguistics 27, 153–198 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hirsimäki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., Pylkkönen, J.: Unlimited vocabulary speech recognition with morph language models applied to finnish. Computer Speech and Language (in press, 2006)Google Scholar
  4. 4.
    Hacioglu, K., Pellom, B., Ciloglu, T., Ozturk, O., Kurimo, M., Creutz, M.: On lexicon creation for Turkish LVCSR. In: Proc. Eurospeech 2003, Geneva, Switzerland, pp. 1165–1168 (2003)Google Scholar
  5. 5.
    Creutz, M., Lagus, K.: Unsupervised discovery of morphemes. In: Proc. Workshop on Morphological and Phonological Learning of ACL 2002, Philadelphia, Pennsylvania, USA, pp. 21–30 (2002)Google Scholar
  6. 6.
    Creutz, M., Lagus, K.: Unsupervised morpheme segmentation and morphology induction from text corpora using Morfessor 1.0. Technical Report A81, Publications in Computer and Information Science, Helsinki University of Technology (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mathias Creutz
    • 1
  • Krista Lagus
    • 1
  • Sami Virpioja
    • 1
  1. 1.Neural Networks Research CentreHelsinki University of Technology, HUTFinland

Personalised recommendations