Advertisement

Statistical Decoding Revisited

  • R. Overbeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4058)

Abstract

In this paper we look at the statistical decoding attack on the McEliece cryptosystem from [4]. The statistical decoding algorithm is a probabilistic algorithm for correcting errors in random codes. It uses precomptuations to provide faster error correction than the classical general decoding algorithms. We analyze the success probability of the algorithm and show how to improve it. Further, we show that the algorithm may not be used to attack the McEliece cryptosystem, due to the large amount of precomputation needed.

Keywords

McEliece Cryptosystem general decoding coding theory public key cryptography code based cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)MATHCrossRefGoogle Scholar
  2. 2.
    Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEETIT: IEEE Transactions on Information Theory 44 (1998)Google Scholar
  3. 3.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Al Jabri, A.: A statistical decoding algorithm for general linear block codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN progress report 42(44), 114–116 (1978)Google Scholar
  6. 6.
    Sendrier, N.: On the security of the McEliece public-key cryptosystem. In: Blaum, M., Farrell, P.G., van Tilborg, H. (eds.) Proceedings of Workshop honoring Prof. Bob McEliece on his 60th birthday, pp. 141–163. Kluwer, Dordrecht (2002)Google Scholar
  7. 7.
    Stern, J.: A method for finding codewords of small weight. Coding Theory and Applications 388, 106–133 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Overbeck
    • 1
  1. 1.Department of Computer Science, Cryptography and Computer Algebra GroupGK Electronic Commerce, TU-Darmstadt 

Personalised recommendations