Visual Based Localization for a Legged Robot

  • Francisco Martín
  • Vicente Matellán
  • Jose María Cañas
  • Pablo Barrera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

This paper presents a visual based localization mechanism for a legged robot in indoor office environments. Our proposal is a probabilistic approach which uses partially observable Markov decision processes. We use a precompiled topological map where natural landmarks like doors or ceiling lights are recognized by the robot using its on-board camera. Experiments have been conducted using the AIBO Sony robotic dog showing that it is able to deal with noisy sensors like vision and to approximate world models representing indoor office environments. The major contributions of this work is the use of an active vision as the main input and localization in not-engineered environments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: Discrete bayesian models for mobile robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (1996)Google Scholar
  2. 2.
    Enderle, S., Ritter, M., Fox, D., Sablatnög, S., Kraetzschmar, G., Palm, G.: Soccer robot localization sporadic visual features. In: IAS 2000 (2000)Google Scholar
  3. 3.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic enviroments. Journal of Artificial Intelligence Reseaarch (1999)Google Scholar
  4. 4.
    Gechter, F., Vincent, T., Charpillet, F.: Robot localization by stochastic vision based device. In: Cybernetics and Informatics (SCI) (2001)Google Scholar
  5. 5.
    Guerrero, P., del Solar, J.R.: Auto-localizació de un robot móvil aibo mediante el método de monte carlo. In: Technical report, Instituto de Ingenieros de Chile (2003)Google Scholar
  6. 6.
    Borenstein, J., Everett, B., Feng, L.: Navigating mobile robots: Systems and techniques. Ltd. Wesley, MA (1996)Google Scholar
  7. 7.
    Kosecká, J., li, F.: Vision based topological markov localization. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, Barcelona (Spain) (April 2004)Google Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    López, M.E., Bergasa, L.M., Escudero, M.S.: Visually augmented pomdp for indoor robot navigation. Applied Informatics, 183–187 (2003)Google Scholar
  10. 10.
    Radhakrishnan, D., Nourbakhsh, I.: Topological localization by training a vision-based transition detector. In: IROS (1999)Google Scholar
  11. 11.
    Simmons, R., Koening, S.: Probabilistic navigation in partially observable environments. In: Proceedings of the 1995 International Joint Conference on Artificial Intelligence, Montreal, Canada (July 1995)Google Scholar
  12. 12.
    Sridharan, M., Kuhlmann, G., Stone, P.: Practical vision-based monte carlo localization on a legged robot. In: IEEE International Conference on Robotics and Automation (April 2005)Google Scholar
  13. 13.
    Thrun, S.: Robotic mapping: A survey. Technical Report CMU-CS-02-111 (2002)Google Scholar
  14. 14.
    Veloso, M., Winner, E., Lenser, S., Bruce, J., Balch, T.: Vision-servoed localization and behavior-based planning for an autonomous quadruped legged robot. In: Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems, Breckenridge, CO, pp. 387–394 (April 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francisco Martín
    • 1
  • Vicente Matellán
    • 1
  • Jose María Cañas
    • 1
  • Pablo Barrera
    • 1
  1. 1.Robotic Labs (GSyC), ESCETUniversidad Rey Juan CarlosMóstoles (Madrid)Spain

Personalised recommendations