Performance Evaluation of an Evolutionary Method for RoboCup Soccer Strategies

  • Tomoharu Nakashima
  • Masahiro Takatani
  • Masayo Udo
  • Hisao Ishibuchi
  • Manabu Nii
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

This paper proposes an evolutionary method for acquiring team strategies of RoboCup soccer agents. The action of an agent in a subspace is specified by a set of action rules. The antecedent part of action rules includes the position of the agent and the distance to the nearest opponent. The consequent part indicates the action that the agent takes when the antecedent part of the action rule is satisfied. The action of each agent is encoded into an integer string that represents the action rules. A chromosome is the concatenated string of integer strings for all agents. We employ an ES-type generation update scheme after producing new integer strings by using crossover and mutation. Through computer simulations, we show the effectiveness of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RoboCup official page, http://www.robocup.org
  2. 2.
    Nakashima, T., Udo, M., Ishibuchi, H.: A Fuzzy Reinforcement Learning for a Ball Interception Problem. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 559–567. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chellapilla, K., Fogel, D.B.: Evolving Neural Networks to Play Checkers Without Relying on Expert Knowledge. IEEE Trans. on Neural Networks 10(6), 1382–3191 (1999)CrossRefGoogle Scholar
  4. 4.
    Chellapilla, K., Fogel, D.B.: Evolving an Expert Checkers Playing Program Without Using Human Expertise. IEEE Trans. on Evolutionary Computation 5(4), 422–428 (2001)CrossRefGoogle Scholar
  5. 5.
    Luke, S., Spector, L.: Evolving Teamwork and Coordination with Genetic Programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 150–156 (1996)Google Scholar
  6. 6.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)MATHGoogle Scholar
  7. 7.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomoharu Nakashima
    • 1
  • Masahiro Takatani
    • 1
  • Masayo Udo
    • 1
  • Hisao Ishibuchi
    • 1
  • Manabu Nii
    • 2
  1. 1.Osaka Prefecture UniversityOsakaJapan
  2. 2.University of HyogoHyogoJapan

Personalised recommendations