Mosaic-Based Global Vision System for Small Size Robot League

  • Yuji Hayashi
  • Seiji Tohyama
  • Hironobu Fujiyoshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

In the RoboCup F180 Small Size League, a global vision system using multiple cameras has been used to capture the whole field view. In the overlapping area of two cameras’ views, a process to merge information from both cameras is needed. To avoid this complex process and rule-based approach, we propose a mosaic-based global vision system which produces high resolution images from multiple cameras. Three mosaic images, which take into account the height of each object such as our robots, opponent robots, and the ball on the field, are generated by pseudo corresponding points. Our system archives a position accuracy of better than 14.2 mm(mean: 4 mm) over a 4 × 5.5 m field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, D., Wyeth, G., Nuske, S.: A Global Vision System for a Robot Soccer Team. In: Proceedings of the 2004 Australasian Conference on Robotics and Automation (ACRA), Canberra, Australia (2004)Google Scholar
  2. 2.
    Egorova, A., Gloye, A., Goktekin, C., Liers, A., Luft, M., Rojas, R., Simon, M., Tenchio, O., Wiesel, F.: FU-Fighters Small Size 2004. In: RoboCup 2004 Symposium, Small Size League Team Description (2004)Google Scholar
  3. 3.
    Kiat, N.B.: LuckyStar 2004. In: RoboCup 2004 Symposium, Small Size League Team Description (2004)Google Scholar
  4. 4.
    Ball, D., Wyeth, G.: UQ RoboRoos 2004: Getting Smarter. In: RoboCup 2004 Symposium, Small Size League Team Description (2004)Google Scholar
  5. 5.
    Tsai, R.Y.: A verstile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation RA-3(4), 323–344 (1987)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  7. 7.
    Szeliski, R.: Image mosaicing for tele-reality applications. In: Proc. IEEE Workshop on Applications of Computer Vision, pp. 44–53 (1994)Google Scholar
  8. 8.
    Hartley, A., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  9. 9.
    Hibino, S., Kodama, Y., Nagasaka, Y., Takahashi, T., Murakami, K., Naruse, T.: Fast Image Processing and Flexible Path Generation System for RoboCup Small Size League. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 53–64. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Bruce, J., Balch, T., Veloso, M.: Fast and Inexpensive Color Image Segmentation for Interactive Robots. In: Proceedings of IROS 2000, Japan (October 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuji Hayashi
    • 1
  • Seiji Tohyama
    • 1
  • Hironobu Fujiyoshi
    • 1
  1. 1.Dept. of Computer ScienceChubu UniversityJapan

Personalised recommendations