Flexible Coordination of Multiagent Team Behavior Using HTN Planning

  • Oliver Obst
  • Joschka Boedecker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


The domain of robotic soccer is known as a highly dynamic and non-deterministic environment for multiagent research. We introduce an approach using Hierarchical Task Network planning in each of the agents for high-level coordination and description of team strategies. Our approach facilitates the maintenance of expert knowledge specified as team strategies separated from the agent implementation. By combining high level plans with reactive basic operators, agents can pursue a grand strategy while staying reactive to changes in the environment. Our results show that the use of a planner in a multiagent system is both possible and useful despite the constraints in dynamic environments.


Multiagent System Team Behavior Hierarchical Task Network Team Strategy Coordination Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belker, T., Hammel, M., Hertzberg, J.: Learning to optimize mobile robot navigation based on HTN plans. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4136–4141 (2003)Google Scholar
  2. 2.
    Bowling, M., Browning, B., Veloso, M.: Plays as team plans for coordination and adaptation. In: Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), Vancouver (June 2004)Google Scholar
  3. 3.
    Coddington, A.M., Fox, M., Long, D.: Handling durative actions in classical planning frameworks. In: Levine, J. (ed.) Proceedings of the 20th Workshop of the UK Planning and Scheduling SIG, pp. 44–58 (2001)Google Scholar
  4. 4.
    Dix, J., Muñoz-Avila, H., Nau, D.: IMPACTing SHOP: Planning in a Multi-Agent Environment. In: Sadri, F., Satoh, K. (eds.) Proceedings of CLIMA 2000, Workshop at CL 2000, Imperial College, pp. 30–42 (2000)Google Scholar
  5. 5.
    Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Stolzenburg, F., Visser, U., Wagner, T.: Towards a league-independent qualitative soccer theory for RoboCup. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 611–618. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning Theory and Practice. Morgan Kaufmann, San Francisco (2004)Google Scholar
  7. 7.
    Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: In: 14th Neural Information Processing Systems (NIPS-14) (2001)Google Scholar
  8. 8.
    Kögler, M., Obst, O.: Simulation league: The next generation. In: Polani, et al. (eds.) [14], pp. 458–469Google Scholar
  9. 9.
    Kok, J.R., Spaan, M.T.J., Vlassis, N.: Multi-robot decision making using coordination graphs. In: de Almeida, A.T., Nunes, U. (eds.) Proceedings of the 11th International Conference on Advanced Robotics, ICAR 2003, Coimbra, Portugal, pp. 1124–1129 (June 2003)Google Scholar
  10. 10.
    Lucchesi, M.: Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing (2001)Google Scholar
  11. 11.
    Murray, J.: Specifying agent behaviors with UML statecharts and StatEdit. In: Polani, et al. (eds.) [14], pp. 145–156Google Scholar
  12. 12.
    Murray, J., Obst, O., Stolzenburg, F.: RoboLog koblenz 2001. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 526–530. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Nau, D.S., Cao, Y., Lotem, A., Muñoz-Avila, H.: Shop: Simple hierarchical ordered planner. In: Proceedings of IJCAI 1999, pp. 968–975 (1999)Google Scholar
  14. 14.
    Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.): RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Sacerdoti, E.D.: A structure for plans and behavior. American Elsevier, Amsterdam (1977)zbMATHGoogle Scholar
  16. 16.
    Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence (1999)Google Scholar
  17. 17.
    Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heterogeneous Agent Systems. MIT Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oliver Obst
    • 1
  • Joschka Boedecker
    • 1
  1. 1.AI Research GroupUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations