A Fuzzy Touch to R-MCL Localization Algorithm

  • Hatice Köse
  • H. Levent Akın
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

In this work, a novel method called Fuzzy Reverse Monte Carlo Localization (Fuzzy R-MCL) for global localization of autonomous mobile agents in the robotic soccer domain is proposed to overcome the uncertainty in the sensors, environment and the motion model. R-MCL is a hybrid method based on both Markov Localization(ML) and Monte Carlo Localization(MCL) where the ML module finds the region where the robot should be and MCL predicts the geometrical location with high precision by selecting samples in this region. In this work, a fuzzy approach is embedded in this method, to improve flexibility, accuracy and robustness. In addition to using Fuzzy membership functions in modeling the uncertainty of the grid cells and samples, different heuristics are used to enable the adaptation of the method to different levels of noise and sparsity. The method is very robust and fast and requires less computational power and memory compared to similar approaches and is accurate enough for high level decision making which is vital for robot soccer.

Keywords

Global localization ML MCL Fuzzy logic Robot soccer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgard, W., Fox, D., Hennig, D., Schmidt, T.: Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids. In: Institut für Informatik III., Universtiat Bonn, Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI 1996) (1996)Google Scholar
  2. 2.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence 128, 99–141 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Gutmann, J.S., Fox, D.: An Experimental Comparison of Localization Methods Continued. In: Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), pp. 454–459 (2002)Google Scholar
  4. 4.
    Cerberus, Team Web Site (2005), http://robot.cmpe.boun.edu.tr/aibo/home.php3
  5. 5.
    Sony Four-Legged Robot League, Soccer Rules (2005), http://www.tzi.de/4legged/pub/Website/History/Rules2005.pdf
  6. 6.
    Köse, H., Akın, H.L.: Robots from nowhere. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 594–601. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kose, H., Akin, H.L.: Experimental Analysis and Comparison of Reverse-Monte Carlo Self-Localization Method. In: Proceedings of CLAWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby, Vienna, Austria, December 2-4 (2004)Google Scholar
  8. 8.
    Stroupe, A.W., Balch, T.: Collaborative Probabilistic Constraint Based Landmark Localization. In: Proceedings of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), pp. 447–452 (2002)Google Scholar
  9. 9.
    Stroupe, A.W., Sikorski, K., Balch, T.: Constraint-Based Landmark Localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 8–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Fox, D., Burgard, W., Thrun, S.: Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)MATHGoogle Scholar
  11. 11.
    Schulz, D., Burgard, W.: Probabilistic State Estimation of Dynamic Objects with a Moving Mobile Robot. Robotics and Autonomous Systems 34, 107–115 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Lenser, S., Veloso, M.: Sensor Resetting Localization for Poorly Modelled Mobile Robots. In: Proceedings of ICRA 2000, pp. 1225–1232. IEEE, Los Alamitos (2000)Google Scholar
  13. 13.
    Kristensen, S., Jensfelt, P.: An Experimental Comparison of Localisation Methods, the MHL Sessions. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp. 992–997 (2003)Google Scholar
  14. 14.
    Buschka, P., Saffiotti, A., Wasik, Z.: Fuzzy Landmark-Based Localization for a Legged Robot. In: Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Takamatsu, Japan, pp. 1205–1210 (2000)Google Scholar
  15. 15.
    Kose, H., Bayhan, S., Akin, H.L.: A Fuzzy Approach to Global Localization in the Robot Soccer Domain. In: IJCI Proceedings of International XII Turkish Symposium on Artificial Intelligence and Neural Networks (TAINN 2003), vol. 1(1), pp. 1–7 (July 2003) ISSN 1304-2386Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hatice Köse
    • 1
  • H. Levent Akın
    • 1
  1. 1.Department of Computer EngineeringBoğaziçi UniversityBebek, IstanbulTurkey

Personalised recommendations