Localizing Victims Through Sound and Probabilistic Grid Maps in an Urban Search and Rescue Scenario

  • Holger Kenn
  • Andreas Pfeil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

Sound source localization can be used in the Robocup Rescue Robots League as a sensor that is capable to autonomously detect victims that emit sound. Using differential time of flight measurements through energy cross-spectrum evaluation of the sound signals, the angular direction to multiple sound sources can be determined with a pair of microphones for SNRs better than -8dB. Assuming that the robot pose is known, this information is sufficient to create probabilistic occupancy grid map of the sound sources in the environment and thus localize the victims in a global map. This has been demonstrated using example measurements in an urban search and rescue scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mattos, L., Grant, E.: Passive Sonar Applications: Target Tracking and Navigation of an Autonomous Robot. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Los Alamitos (2004)Google Scholar
  2. 2.
    Kitano, H., Tadokoro, S.: Robocup rescue. a grand challenge for multiagent and intelligent systems. AI Magazine 22, 39–52 (2001)Google Scholar
  3. 3.
    Takahashi, T.: Tadokoro: Working with robots in disasters. IEEE Robotics and Automation Magazine 9, 34–39 (2002)CrossRefGoogle Scholar
  4. 4.
    Osuka, K., Murphy, R., Schultz, A.: Usar competitions for physically situated robots. IEEE Robotics and Automation Magazine 9, 26–33 (2002)CrossRefGoogle Scholar
  5. 5.
    Birk, A., Kenn, H., et al.: The IUB 2002 Smallsize League Team. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Birk, A., Carpin, S., Kenn, H.: The IUB 2003 Rescue Robot Team. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Kenn, H., Carpin, S., et al.: FAST-Robots: a rapid-prototyping framework for intelligent mobile robotics. In: Artificial Intelligence and Applications (AIA 2003). ACTA Press (2003)Google Scholar
  8. 8.
    Carpin, S., Kenn, H., Birk, A.: Autonomous Mapping in the Real Robots Rescue League. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley-Interscience, Hoboken (1996)Google Scholar
  10. 10.
    Kalman, R.: A new approach to linear filtering and prediction problems. Transactions of ASME. Journal of Basic Engineering 83 (1960)Google Scholar
  11. 11.
    Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localisation and map building (slam) problem. IEEE Transactions of Robotics and Automation 17, 229–241 (2001)CrossRefGoogle Scholar
  12. 12.
    Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine (1988)Google Scholar
  13. 13.
    Thrun, S.: Robot mapping: a survey. Technical Report CMU-CS-02-111, Carnegie Mellon University (2002)Google Scholar
  14. 14.
    Kenn, H., Pfeil, A.: A sound source localization sensor using probabilistic occupancy grid maps. In: Proceedings of the Mechatronics and Robotics Conference 2004. IEEE Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Holger Kenn
    • 1
  • Andreas Pfeil
    • 2
  1. 1.Technologie-Zentrum InformatikUniversität BremenGermany
  2. 2.School of Engineering and ScienceInternational University BremenGermany

Personalised recommendations