Design, Dynamic Analysis and Optimization of a Rover for Rescue Operations

  • Hadi Tavakoli Nia
  • Seyed Hamidreza Alemohammad
  • Saeed Bagheri
  • Reza Hajiaghaee Khiabani
  • Ali Meghdari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

In this paper a new approach to dynamic optimization of a rough terrain rover is introduced. Since rover wheels traction has a significant role in rover mobility, optimization is based on the minimization of traction at rover wheel-ground interfaces. The method of optimization chosen is Genetic Algorithm (GA) which is a directed random search technique along with the usual optimization based on directional derivatives. GA is a suitable and efficient method of optimization for nonlinear problems. The procedure is applied on a specific rough terrain rover called CEDRA-I Shrimp Rover. The present work resulted in design and manufacturing of the optimized rover called CEDRA-II Shrimp Rover.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tai, M.: Modeling of Wheeled Mobile Robot on Rough Terrain ASME International Mechanical Engineering Congress, Washington, DC (2003)Google Scholar
  2. 2.
    Iagnemma, K., Dubowsky, S.: Mobile Robot Rough-Terrain Control (RTC) for Planetary Exploration. In: Proceedings of the26th ASME Biennial Mechanisms and Robotics Conference, DETC (2000)Google Scholar
  3. 3.
    Kawabe, T., Nakazawa, M., Notsu, I., Watanabe, Y.: Sliding Mode Controller for Wheel Slip Ratio Control System. Journal of Vehicle System Dynamics 5-6, 393–408 (1997)CrossRefGoogle Scholar
  4. 4.
    Reister, D., Unseren, M.: Position and Constraint Force Control of a Vehicle with Two or More Steerable Drive Wheels. IEEE Transactions on Robotics and Automation 9, 723–731 (1993)CrossRefGoogle Scholar
  5. 5.
    Sreenivasan, S., Waldron, K.: Displacement Analysis of an Actively Articulated Wheeled Vehicle Configuration with Extensions to Motion Planning on Uneven Terrain. Transactions of the ASME Journal of Mechanical Design 118, 312–317 (1996)CrossRefGoogle Scholar
  6. 6.
    Hacot, H.: Analysis and Traction Control of a Rocker-Bogie Planetary Rover. M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1998)Google Scholar
  7. 7.
    Meghdari, A., Pishkenari, H.N., Gaskarimahalle, A.L., Mahboobi, S.H., Karimi, R.: Optimal Design and Fabrication of CEDRA Rescue Robot Using Genetic Algorithm. In: Proc. of the International Design Engineering Technical Conferences DETC, Salt Lake City, Utah (2004)Google Scholar
  8. 8.
    Kane, T.R., Levinson, D.A.: The use of Kane’s Dynamical Equations in Robotics. Int. J. Robotics Research. 7, 333–342 (1996)Google Scholar
  9. 9.
    Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Piguet, R., Siegwart, R.: An Innovative Space Rover with Extended Climbing Abilities. In: Proceedings of Space & Robotics, the Fourth International Conference and Exposition on Robotics in Challenging Environments, Albuquerque, New Mexico (2000)Google Scholar
  10. 10.
    Volpe, R., Balaram, J., Ohm, T., Ivlev, R.: Rocky 7: A Next Generation Mars Rover Prototype. Journal of Advanced Robotics 4 (1997)Google Scholar
  11. 11.
    Kemurdjian, A.L., Gromov, V., Mishkinyuk, V., Kucherenko, S.P.: Small Marsokhod Configuration. In: International Conference on Robotics & Automation, Nice (1992)Google Scholar
  12. 12.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications, 1st edn. Series in Mechanical Engineering. McGraw-Hill, New York (1985)Google Scholar
  13. 13.
    Wang, J.T., Huston, R.L.: Kane’s Equations with Undetermined Multipliers-Application to Constrained Multibody Systems. Journal of Applies Mechanics 2, 424–429 (1987)CrossRefGoogle Scholar
  14. 14.
    Lesser, M.: A Geometrical Interpretayion of Kane’s Equations. Proceedings of the Royal Society of London, Series A: Mathematical and Physiscal Sciences 1896, 69–87 (1992)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pham, D.T., Karaboga, D.: Intelligent Optimization Techniques. Springer, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hadi Tavakoli Nia
    • 1
  • Seyed Hamidreza Alemohammad
    • 1
  • Saeed Bagheri
    • 1
  • Reza Hajiaghaee Khiabani
    • 1
  • Ali Meghdari
    • 1
  1. 1.Center of Excellence in Design, Robotics and Automation, Department of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations