Communicative Exploration with Robot Packs

  • Martijn N. Rooker
  • Andreas Birk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


Exploration is a core challenge for RoboCup Rescue. So-called communicative exploration is a novel strategy for multi-robot exploration that unlike other approaches takes the limits of wireless communication systems into account. Here, previous results that where achieved for a team of robots linked to a basestation are significantly extended to also cover robot packs, i.e., multi-robot teams that are not permanently tied to an operator’s station. Unlike teams that are constrained by the immobility of a basestation, packs can explore arbitrarily large regions. Results from experiments with packs of 4, 5 and 6 robots are presented. The new strategy constantly maintains the communication between the robots while exploring, whereas the commonly used frontier-based exploration strategy, which is used in the experiments as comparison to our approach, leads to a rapid loss of communication.


Communication Range Multiple Robot Exploration Algorithm Rescue Robot Frontier Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Ark92]
    Arkin, R.C.: Cooperation without communication: Multiagent schema-based robot navigation. Journal of Robotic Systems 9(3), 351–364 (1992)CrossRefGoogle Scholar
  2. [BCK04]
    Birk, A., Carpin, S., Kenn, H.: The IUB 2003 rescue robot team. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, Heidelberg (2004)Google Scholar
  3. [BFM+00]
    Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (2000)Google Scholar
  4. [BKP03]
    Birk, A., Kenn, H., Pfingsthorn, M.: The iub rescue robots: From webcams to lifesavers. In: 1st International Workshop on Advances in Service Robotics (ASER 2003) (2003)Google Scholar
  5. [BKR+02]
    Birk, A., Kenn, H., Rooker, M., Akhil, A., Vlad, B.H., Nina, B., Christoph, B.-S., Vinod, D., Dumitru, E., Ioan, H., Aakash, J., Premvir, J., Benjamin, L., Gediminas, L., James, M., Andreas, P., Max, P., Kristina, S., Jormquan, S., Julian, W.: The IUB 2002 rescue robot team. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752. Springer, Heidelberg (2003)Google Scholar
  6. [JMH04]
    Johnson, D.B., Maltz, D.A., Hu, Y.-C.: The dynamic source routing protocol for mobile ad hoc networks (dsr), IETF Internet Draft, draft-ietf-manet-dsr-10.txt (July 2004)Google Scholar
  7. [JW96]
    Johnson, D.B., Waltz, D.A.: Dynamic source routing in ad-hoc wireless networks. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, pp. 153–181. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  8. [ME85]
    Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 116–121 (1985)Google Scholar
  9. [MWBDW02]
    Makarenko, A.A., Williams, S.B., Bourgault, F., Durrant-Whyte, H.F.: An experiment in integrated exploration. In: IEEE/RSJ Intl. Workshop on Intelligent Robots and Systems (2002)Google Scholar
  10. [OP99]
    O’Hara, B., Petrick, A.: The IEEE 802.11 Handbook: A Designer’s Companion. In: Standards Information Network. IEEE Press, Los Alamitos (1999)Google Scholar
  11. [Par02]
    Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (2002)CrossRefGoogle Scholar
  12. [Per00]
    Perkins, C.E.: Ad Hoc Networking. Addison Wesley Professional, Reading (2000)Google Scholar
  13. [PPK+03]
    Park, J.-A., Park, S.-K., Kim, D.-H., Cho, P.-D., Cho, K.-R.: Experiments on radio interference between wireless lan and other radio devices on a 2.4 ghz ism band. In: The 57th IEEE Semiannual Vehicular Technology Conference, vol. 3, pp. 1798–1801 (2003)Google Scholar
  14. [RB05]
    Rooker, M., Birk, A.: Combining exploration and ad-hoc networking in robocup rescue. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 236–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. [RMH01]
    Murphy, R.R., Casper, J., Micire, M.: Potential tasks and research issues for mobile robots in roboCup rescue. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 339. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. [RT99]
    Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad-hoc mobile wireless networks. IEEE Personal Communications Magazine, 46–55 (April 1999)Google Scholar
  17. [Sny01]
    Snyder, R.G.: Robots assist in search and rescue efforts at wtc. IEEE Robotics and Automation Magazine 8(4), 26–28 (2001)Google Scholar
  18. [Yam97]
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automoiaton, pp. 146–151 (July 1997)Google Scholar
  19. [Yam98]
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents (Agents 1998), pp. 47–53 (May 1998)Google Scholar
  20. [Zel92]
    Zelinsky, A.: A mobile robot exploration algorithm. IEEE Transactions on Robotics and Automation 8(6) (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martijn N. Rooker
    • 1
  • Andreas Birk
    • 1
  1. 1.School of Engineering and ScienceInternational University BremenBremenGermany

Personalised recommendations