Faster Two Dimensional Scaled Matching

  • Amihood Amir
  • Eran Chencinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4009)


The rapidly growing need for analysis of digitized images in multimedia systems has lead to a variety of interesting problems in multidimensional pattern matching. One of the problems is that of scaled matching, finding all appearances of a pattern, proportionally enlarged according to an arbitrary real-sized scale, in a given text.

The best known algorithm for this problem uses techniques from dictionary matching to solve the problem in O(nm 3+n 2 m logm) time using O(nm 3+n 2) space, where the text is a two-dimensional n ×n array and the pattern is a two-dimensional m ×m array.

We present a new approach for solving the scaled matching problem improving both the running times and the space requirements. Our algorithm runs in O(n 2 m) time and uses O(n 2) space. This time includes the preprocessing (O(m 3) time and O(m 2) space), since the problem is only defined for mn.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two dimensional pattern matching. SIAM J. Comp. 23(2), 313–323 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Information Processing Letters 70(4), 185–190 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real Two Dimensional Scaled Matching. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 353–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Amir, A., Butman, A., Lewenstein, M., Porat, E., Tsur, D.: Efficient one dimensional real scaled matching. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 1–9. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Amir, A., Calinescu, G.: Alphabet independent and dictionary scaled matching. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 320–334. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling. Journal of Algorithms 13(1), 2–32 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Amir, A., Tsur, D., Kapah, O.: Faster two dimensional pattern matching with rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting invariant template matching. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 39–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-dimensional string matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 118–125. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th ACM Symposium on Theory of Computing, vol. 67, pp. 135–143 (1984)Google Scholar
  11. 11.
    Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorithmica 12(3/4), 375–408 (1994)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amihood Amir
    • 1
  • Eran Chencinski
    • 2
  1. 1.Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel and College of Computing, Georgia TechAtlantaUSA
  2. 2.Dept. of Computer ScienceBar-Ilan U.Ramat-GanIsrael

Personalised recommendations