Deep Inference and Its Normal Form of Derivations

  • Kai Brünnler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


We see a notion of normal derivation for the calculus of structures, which is based on a factorisation of derivations and which is more general than the traditional notion of cut-free proof in this formalism.


Modal Logic Inference Rule Classical Logic Normal Derivation Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brünnler, K.: Atomic cut elimination for classical logic. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 86–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden (September 2003)Google Scholar
  3. 3.
    Brünnler, K.: Cut elimination inside a deep inference system for classical predicate logic. Studia Logica 82(1), 51–71 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brünnler, K., Lengrand, S.: On two forms of bureaucracy in derivations. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction, Technische Universität Dresden, pp. 69–80 (2005)Google Scholar
  5. 5.
    Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 347–361. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference (in preparation, 2006)Google Scholar
  7. 7.
    Di Gianantonio, P.: Structures for multiplicative cyclic linear logic: Deepness vs cyclicity. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 130–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fürmann, C., Pym, D.: Order-enriched categorical models of the classical sequent calculus (submitted, 2004)Google Scholar
  9. 9.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Amsterdam (1969)Google Scholar
  10. 10.
    Guglielmi, A.: The calculus of structures website, Available from:
  11. 11.
    Guglielmi, A.: A system of interaction and structure. Technical Report WV-02-10, Technische Universität Dresden. ACM Transactions on Computational Logic (to appear, 2002)Google Scholar
  12. 12.
    Guglielmi, A.: The problem of bureaucracy and identity of proofs from the perspective of deep inference. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction, Technische Universität Dresden, pp. 53–68 (2005)Google Scholar
  13. 13.
    Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Guiraud, Y.: The three dimensions of proofs. Annals of pure and applied logic (to appear, 2005)Google Scholar
  15. 15.
    Hein, R., Stewart, C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction, Technische Universität Dresden, pp. 126–143 (2005)Google Scholar
  16. 16.
    Kahramanoğullari, O.: Reducing nondeterminism in the calculus of structures (manuscript, 2005)Google Scholar
  17. 17.
    Lamarche, F., Straßburger, L.: Naming proofs in classical propositional logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 246–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    McKinley, R.: Categorical models of first-order classical proofs. The degree of Doctor of Philosophy of the University of Bath (submitted, 2005)Google Scholar
  19. 19.
    Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  20. 20.
    Schütte, K.: Schlussweisen-Kalküle der Prädikatenlogik. Mathematische Annalen 122, 47–65 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schütte, K.: Proof Theory. Springer, Heidelberg (1977)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications (2005)Google Scholar
  23. 23.
    Stouppa, P.: A deep inference system for the modal logic S5. Studia Logica (to appear, 2006)Google Scholar
  24. 24.
    Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. Ph.D thesis, Technische Universität Dresden (2003)Google Scholar
  25. 25.
    Straßburger, L.: On the axiomatisation of boolean categories with and without medial (manuscript, 2005)Google Scholar
  26. 26.
    Tiu, A.F.: Properties of a Logical System in the Calculus of Structures. Master’s thesis, Technische Universität Dresden (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kai Brünnler
    • 1
  1. 1.Institut für angewandte Mathematik und InformatikBernSwitzerland

Personalised recommendations