A Computability Theory of Real Numbers

  • Xizhong Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

Abstract

In mathematics, various representations of real numbers have been investigated. Their standard effectivizations lead to equivalent definitions of computable real numbers. For the primitive recursive level, however, these effectivizations are not equivalent any more. Similarly, if the weaker computability is considered, we usually obtain different weak computability notions of reals according to different representations of real number. In this paper we summarize several recent results about weak computability of real numbers and their hierarchies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. Journal of Complexity 16(4), 676–690 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Calude, C., Hertling, P., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Downey, R., Wu, G., Zheng, X.: Degrees of d.c.e. reals. Mathematical Logic Quarterly 50(4/5), 345–350 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Downey, R.G.: Some computability-theoretic aspects of reals and randomness. In: The Notre Dame lectures. Lect. Notes Log, vol. 18, pp. 97–147. Assoc. Symbol. Logic, Urbana (2005)Google Scholar
  5. 5.
    Dunlop, A., Pour-El, M.: The degree of unsolvability of a real number. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 16–29. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Ershov, Y.L.: A certain hierarchy of sets. i, ii, iii (Russian). Algebra i Logika 7(1), 47–73 (1968); 7(4), 15–47 (1968); 9, 34–51 (1970)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ho, C.-K.: Relatively recursive reals and real functions. Theoretical Computer Science 210, 99–120 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ko, K.-I.: On the definitions of some complexity classes of real numbers. Math. Systems Theory 16, 95–109 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ko, K.-I.: Complexity Theory of Real Functions. In: Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)Google Scholar
  10. 10.
    Lehman, R.: On primitive recursive real numbers. Fundamenta Mathematicae 49, 105–118 (1960/1961)MathSciNetMATHGoogle Scholar
  11. 11.
    Mostowski, A.: On computable sequences. Fundamenta Mathematicae 44, 37–51 (1957)MathSciNetMATHGoogle Scholar
  12. 12.
    Myhill, J.: Criteria of constructibility for real numbers. The Journal of Symbolic Logic 18(1), 7–10 (1953)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Péter, R.: Rekursive Funktionen. Akademischer Verlag, Budapest (1951)MATHGoogle Scholar
  14. 14.
    Raichev, A.: D.c.e. reals, relative randomness, and real closed fields. In: CCA 2004, August 16-20, 2004. Lutherstadt Wittenberg, Germany (2004)Google Scholar
  15. 15.
    Rettinger, R., Zheng, X.: On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19(5), 672–691 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rettinger, R., Zheng, X.: A hierarchy of on the Turing degrees for divergence bounded computable reals. In: CCA 2005, Kyoto, Japan, August 25-29 (2005)Google Scholar
  17. 17.
    Rettinger, R., Zheng, X.: Solovay reducibility on d-c.e. real numbers. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 359–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B.: Weakly computable real numbers and total computable real functions. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 586–595. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Rice, H.G.: Recursive real numbers. Proc. Amer. Math. Soc. 5, 784–791 (1954)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Robinson, R.M.: Review of Peter, R., Rekursive Funktionen. The Journal of Symbolic Logic 16, 280–282 (1951)Google Scholar
  21. 21.
    Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pacific J. Math. 31, 215–231 (1969)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Solovay, R.M.: Draft of a paper (or a series of papers) on chaitin’s work. manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215 (1975)Google Scholar
  23. 23.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. The Journal of Symbolic Logic 14(3), 145–158 (1949)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. of the London Mathematical Society 42(2), 230–265 (1936)MathSciNetMATHGoogle Scholar
  25. 25.
    Weihrauch, K., Zheng, X.: A finite hierarchy of the recursively enumerable real numbers. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 798–806. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Wu, G.: Regular reals. In: Brattka, V., Schröder, M., Weihrauch, K., Zhong, N., (eds.) CCA 2003, Cincinnati, USA, Informatik Berichte, FernUniversität Hagen, vol. 302- 8, pp. 363 – 374 (2003)Google Scholar
  27. 27.
    Zheng, X.: Recursive approximability of real numbers. Mathematical Logic Quarterly 48(suppl. 1), 131–156 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zheng, X.: On the divergence bounded computable real numbers. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 102–111. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Zheng, X.: On the Turing degrees of weakly computable real numbers. Journal of Logic and Computation 13(2), 159–172 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zheng, X., Rettinger, R.: A note on the Turing degree of divergence bounded computable real numbers. In: CCA 2004. Lutherstadt Wittenberg, Germany, August 16-20 (2004)Google Scholar
  31. 31.
    Zheng, X., Rettinger, R.: On the extensions of solovay reducibility. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 360–369. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Zheng, X., Rettinger, R.: Weak computability and representation of reals. Mathematical Logic Quarterly 50(4/5), 431–442 (2004)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zheng, X., Rettingre, R., Barmpalias, G.: h-monotonically computable real numbers. Mathematical Logic Quarterly 51(2), 1–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. Mathematical Logic Quarterly 47(1), 51–65 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xizhong Zheng
    • 1
    • 2
  1. 1.Department of Computer ScienceJiangsu UniversityZhenjiangChina
  2. 2.Theoretische InformatikBTU CottbusCottbusGermany

Personalised recommendations