# A Computability Theory of Real Numbers

• Xizhong Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

## Abstract

In mathematics, various representations of real numbers have been investigated. Their standard effectivizations lead to equivalent definitions of computable real numbers. For the primitive recursive level, however, these effectivizations are not equivalent any more. Similarly, if the weaker computability is considered, we usually obtain different weak computability notions of reals according to different representations of real number. In this paper we summarize several recent results about weak computability of real numbers and their hierarchies.

## Preview

### References

1. 1.
Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. Journal of Complexity 16(4), 676–690 (2000)
2. 2.
Calude, C., Hertling, P., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)
3. 3.
Downey, R., Wu, G., Zheng, X.: Degrees of d.c.e. reals. Mathematical Logic Quarterly 50(4/5), 345–350 (2004)
4. 4.
Downey, R.G.: Some computability-theoretic aspects of reals and randomness. In: The Notre Dame lectures. Lect. Notes Log, vol. 18, pp. 97–147. Assoc. Symbol. Logic, Urbana (2005)Google Scholar
5. 5.
Dunlop, A., Pour-El, M.: The degree of unsolvability of a real number. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 16–29. Springer, Heidelberg (2001)
6. 6.
Ershov, Y.L.: A certain hierarchy of sets. i, ii, iii (Russian). Algebra i Logika 7(1), 47–73 (1968); 7(4), 15–47 (1968); 9, 34–51 (1970)
7. 7.
Ho, C.-K.: Relatively recursive reals and real functions. Theoretical Computer Science 210, 99–120 (1999)
8. 8.
Ko, K.-I.: On the definitions of some complexity classes of real numbers. Math. Systems Theory 16, 95–109 (1983)
9. 9.
Ko, K.-I.: Complexity Theory of Real Functions. In: Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)Google Scholar
10. 10.
Lehman, R.: On primitive recursive real numbers. Fundamenta Mathematicae 49, 105–118 (1960/1961)
11. 11.
Mostowski, A.: On computable sequences. Fundamenta Mathematicae 44, 37–51 (1957)
12. 12.
Myhill, J.: Criteria of constructibility for real numbers. The Journal of Symbolic Logic 18(1), 7–10 (1953)
13. 13.
Péter, R.: Rekursive Funktionen. Akademischer Verlag, Budapest (1951)
14. 14.
Raichev, A.: D.c.e. reals, relative randomness, and real closed fields. In: CCA 2004, August 16-20, 2004. Lutherstadt Wittenberg, Germany (2004)Google Scholar
15. 15.
Rettinger, R., Zheng, X.: On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19(5), 672–691 (2003)
16. 16.
Rettinger, R., Zheng, X.: A hierarchy of on the Turing degrees for divergence bounded computable reals. In: CCA 2005, Kyoto, Japan, August 25-29 (2005)Google Scholar
17. 17.
Rettinger, R., Zheng, X.: Solovay reducibility on d-c.e. real numbers. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 359–368. Springer, Heidelberg (2005)
18. 18.
Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B.: Weakly computable real numbers and total computable real functions. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 586–595. Springer, Heidelberg (2001)
19. 19.
Rice, H.G.: Recursive real numbers. Proc. Amer. Math. Soc. 5, 784–791 (1954)
20. 20.
Robinson, R.M.: Review of Peter, R., Rekursive Funktionen. The Journal of Symbolic Logic 16, 280–282 (1951)Google Scholar
21. 21.
Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pacific J. Math. 31, 215–231 (1969)
22. 22.
Solovay, R.M.: Draft of a paper (or a series of papers) on chaitin’s work. manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215 (1975)Google Scholar
23. 23.
Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. The Journal of Symbolic Logic 14(3), 145–158 (1949)
24. 24.
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. of the London Mathematical Society 42(2), 230–265 (1936)
25. 25.
Weihrauch, K., Zheng, X.: A finite hierarchy of the recursively enumerable real numbers. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 798–806. Springer, Heidelberg (1998)
26. 26.
Wu, G.: Regular reals. In: Brattka, V., Schröder, M., Weihrauch, K., Zhong, N., (eds.) CCA 2003, Cincinnati, USA, Informatik Berichte, FernUniversität Hagen, vol. 302- 8, pp. 363 – 374 (2003)Google Scholar
27. 27.
Zheng, X.: Recursive approximability of real numbers. Mathematical Logic Quarterly 48(suppl. 1), 131–156 (2002)
28. 28.
Zheng, X.: On the divergence bounded computable real numbers. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 102–111. Springer, Heidelberg (2003)
29. 29.
Zheng, X.: On the Turing degrees of weakly computable real numbers. Journal of Logic and Computation 13(2), 159–172 (2003)
30. 30.
Zheng, X., Rettinger, R.: A note on the Turing degree of divergence bounded computable real numbers. In: CCA 2004. Lutherstadt Wittenberg, Germany, August 16-20 (2004)Google Scholar
31. 31.
Zheng, X., Rettinger, R.: On the extensions of solovay reducibility. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 360–369. Springer, Heidelberg (2004)
32. 32.
Zheng, X., Rettinger, R.: Weak computability and representation of reals. Mathematical Logic Quarterly 50(4/5), 431–442 (2004)
33. 33.
Zheng, X., Rettingre, R., Barmpalias, G.: h-monotonically computable real numbers. Mathematical Logic Quarterly 51(2), 1–14 (2005)
34. 34.
Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. Mathematical Logic Quarterly 47(1), 51–65 (2001)