Kurt Gödel and Computability Theory

  • Richard Zach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

Abstract

Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar at Princeton in 1934. Seen in the historical context, Gödel was an important catalyst for the emergence of computability theory in the mid 1930s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen 99, 118–133 (1928)MathSciNetCrossRefMATHGoogle Scholar
  2. Barendregt, H.: The impact of the lambda calculus in logic and computer science. The Bulletin of Symbolic Logic 3(2), 181–215 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. Buss, S.R.: On Gödel’s theorems on lengths of proofs I: Number of lines and speedups for arithmetic. Journal of Symbolic Logic 39, 737–756 (1994)CrossRefMATHGoogle Scholar
  4. Buss, S.R.: On Gödel’s theorems on lengths of proofs II: Lower bounds for recognizing k symbol provability. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II. Birkhäuser, Basel, pp. 57–90 (1995)Google Scholar
  5. Church, A.: A set of postulates for the foundation of logic. Annals of Mathematics 33, 346–366 (1932)MathSciNetCrossRefMATHGoogle Scholar
  6. Church, A.: A set of postulates for the foundation of logic (second paper). Annals of Mathematics 34, 839–864 (1933)MathSciNetCrossRefMATHGoogle Scholar
  7. Church, A.: An unsolvable problem of elementary number theory. Bulletin of the American Mathematical Society 41, 332–333 (1935)MATHGoogle Scholar
  8. Church, A.: A note on the Entscheidungsproblem. Journal of Symbolic Logic 1, 40–41 (1936a)CrossRefMATHGoogle Scholar
  9. Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 345–363 (1936b)MathSciNetCrossRefMATHGoogle Scholar
  10. Crossley, J.N.: Remniscences of logicians. In: Crossley, J.N. (ed.) Algebra and Logic. Papers from the 1974 Summer Research Institute of the Australian Mathematical Society. LNM, vol. 450, pp. 1–62. Springer, Heidelberg (1975)Google Scholar
  11. Curry, H.B.: Grundlagen der kombinatorischen Logik. American Journal of Mathematics 52, 509–536 (1930)MathSciNetCrossRefMATHGoogle Scholar
  12. Davis, M.: Why Gödel didn’t have Church’s thesis. Information and Control 54, 3–24 (1982)MathSciNetCrossRefMATHGoogle Scholar
  13. Dawson Jr., J.W.: Logical Dilemmas. The Life and Work of Kurt Gödel. Wellesley, Mass, A K Peters (1997)Google Scholar
  14. Gödel, K.: Über die Vollständigkeit des Logikkalküls. Dissertation, Universität Wien; Reprinted and translated in (Gödel, 1986, pp. 60–101) (1929)Google Scholar
  15. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37, 349–360 (1930); Reprinted and translated in (Gödel, 1986, pp. 102–123)MathSciNetCrossRefMATHGoogle Scholar
  16. Gödel, K.: Einige metamathematische Resultate über Entscheidungsdefinitheit und Widerspruchsfreiheit. Anzeiger der Akademie der Wissenschaften in Wien 67, 214–215 (1930); Reprinted and translated in (Gödel, 1986, pp. 140–143)MATHGoogle Scholar
  17. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); Reprinted and translated in (Gödel, 1986, pp. 144–195)MathSciNetCrossRefMATHGoogle Scholar
  18. Gödel, K.: Ein Spezialfall des Entscheidungsproblem der theoretischen Logik. Ergebnisse eines mathematischen Kolloquiums 2, 27–28 (1932); Reprinted and translated in (Gödel, 1986, pp. 130–235)Google Scholar
  19. Gödel, K.: Zum Entscheidungsproblem des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 40, 433–443 (1933); Reprinted and translated in (Gödel 1986, pp. 306–327) MathSciNetCrossRefMATHGoogle Scholar
  20. Gödel, K.: On undecidable propositions of formal mathematical systems. Lecture notes by Kleene, S.C., Rosser, J.B. Princeton University, Princeton (1934); Reprinted in (Gödel, 1986, 338-371)Google Scholar
  21. Gödel, K.: Über die Länge von Beweisen. Ergebnisse eines mathematisches Kolloquiums 7, 23–24 (1936); Reprinted and translated in (Gödel, 1986, pp. 394–399)MATHGoogle Scholar
  22. Gödel, K.: Remarks before the Princeton bicentennial conference on problems in mathematics. In: Feferman, S., et al. (eds.) Collected Works, vol. 2, pp. 144–153. Oxford University Press, Oxford (1946)Google Scholar
  23. Gödel, K.: Collected Works. Feferman, S., et al. (eds.), vol. 1. Oxford University Press, Oxford (1986)Google Scholar
  24. Gödel, K.: Collected Works. Feferman, S., et al. (eds.), vol. 4. Oxford University Press, Oxford (2003a)Google Scholar
  25. Gödel, K.: Collected Works. Feferman, S., et al. (eds.), vol. 5. Oxford University Press, Oxford (2003b)Google Scholar
  26. Hartmanis, J.: Gödel, von Neumann and the P=?NP problem. Bulletin of the European Association for Theoretical Computer Science (EATCS) 38, 101–107 (1989)MATHGoogle Scholar
  27. Hilbert, D.: Über das Unendliche. Mathematische Annalen 95, 161–190 (1926), Lecture given Münster, June 4, 1925. English translation in (van Heijenoort, 1967, pp. 367–392)MathSciNetCrossRefMATHGoogle Scholar
  28. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. 2. Springer, Berlin (1939)MATHGoogle Scholar
  29. Kleene, S.C.: A theory of positive integers in formal logic. American Journal of Mathematics 57, 153–173 (1935)MathSciNetCrossRefMATHGoogle Scholar
  30. Kleene, S.C.: General recursive functions of natural numbers. Mathematische Annalen 112, 727–742 (1936a)MathSciNetCrossRefMATHGoogle Scholar
  31. Kleene, S.C.: λ-definability and recursiveness. Duke Mathematical Journal 2, 340–353 (1936b)MathSciNetCrossRefMATHGoogle Scholar
  32. Kleene, S.C.: Introduction to Metamathematics. Amsterdam, North-Holland (1952)Google Scholar
  33. Kleene, S.C.: Origins of recursive function theory. Annals of the History of Computing 3, 52–67 (1981)MathSciNetCrossRefMATHGoogle Scholar
  34. Kleene, S.C.: Gödel’s impression on students of logic in the 1931s. In: Weingartner, P., Schmetterer, L. (eds.) Gödel Remembered, pp. 49–64. Bibliopolis (1987)Google Scholar
  35. Kleene, S.C., Barkley Rosser, J.: The inconsistency of certain formal logics. Annals of Mathematics 36, 630–636 (1935)MathSciNetCrossRefMATHGoogle Scholar
  36. Péter, R.: über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktionen. Mathematische Annalen 110, 612–632 (1934)CrossRefMATHGoogle Scholar
  37. Péter, R.: Konstruktion nichtrekursiver Funktionen. Mathematische Annalen 111, 42–60 (1935)MathSciNetCrossRefMATHGoogle Scholar
  38. Seldin, J.P.: The logic of Curry and Church. In: Gabbay, D., Woods, J. (eds.) Handbook of the History of Logic, vol. 5. Elsevier, Amsterdam (Forthcoming, 2006)Google Scholar
  39. Sieg, W.: Step by recursive step: Church’s analysis of effective computability. Bulletin of Symbolic Logic 3, 154–180 (1997)MathSciNetCrossRefMATHGoogle Scholar
  40. Sieg, W.: Only two letters: The correspondence between Herbrand and Gödel. Bulletin of Symbolic Logic 11, 172–184 (2005)MathSciNetCrossRefMATHGoogle Scholar
  41. Sieg, W.: Gödel on computability. Philosophia Mathematica 14 (Forthcoming, 2006)Google Scholar
  42. van Heijenoort, J. (ed.): From Frege to Gödel. A Source Book in Mathematical Logic, 1897–1931. Harvard University Press, Cambridge, Mass (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Zach
    • 1
  1. 1.Department of PhilosophyUniversity of CalgaryCalgaryCanada

Personalised recommendations