Partial Recursive Functions in Martin-Löf Type Theory

  • Anton Setzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

Abstract

In this article we revisit the approach by Bove and Capretta for formulating partial recursive functions in Martin-Löf Type Theory by indexed inductive-recursive definitions. We will show that all inductive-recursive definitions used there can be replaced by inductive definitions. However, this encoding results in an additional technical overhead. In order to obtain directly executable partial recursive functions, we introduce restrictions on the indexed inductive-recursive definitions used. Then we introduce a data type of partial recursive functions. This allows to define higher order partial recursive functions like the map functional, which depend on other partial recursive functions. This data type will be based on the closed formalisation of indexed inductive-recursive definitions introduced by Dybjer and the author. All elements of this data type will represent partial recursive functions, and the set of partial recursive functions will be closed under the standard operations for forming partial recursive functions, and under the total functions.

Keywords

Martin-Löf type theory computability theory recursion theory Kleene index Kleene brackets partial recursive functions inductive-recursive definitions indexed induction-recursion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BC05a]
    Bove, A., Capretta, V.: Modelling general recursion in type theory. Mathematical Structures in Computer Science 15(4), 671–708 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. [BC05b]
    Bove, A., Capretta, V.: Recursive functions with higher order domains. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 116–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. [Cap05]
    Capretta, V.: General recursion via coinductive types. Logical Methods in Computer Science 1(2), 1–18 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. [DS99]
    Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. [DS01]
    Dybjer, P., Setzer, A.: Indexed induction-recursion. In: Kahle, R., Schroeder-Heister, P., Stärk, R.F. (eds.) PTCS 2001. LNCS, vol. 2183, pp. 93–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. [DS03]
    Dybjer, P., Setzer, A.: Induction-recursion and initial algebras. Annals of Pure and Applied Logic 124, 1–47 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. [DS06]
    Dybjer, P., Setzer, A.: Indexed induction-recursion. Journal of Logic and Algebraic Programming 66, 1–49 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. [Dyb94]
    Dybjer, P.: Inductive families. Formal Aspects of Comp. 6, 440–465 (1994)CrossRefMATHGoogle Scholar
  9. [Dyb00]
    Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic Logic 65(2), 525–549 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anton Setzer
    • 1
  1. 1.Dept. of Computing ScienceUniversity of Wales SwanseaSwanseaUK

Personalised recommendations