Partial Continuous Functions and Admissible Domain Representations

  • Fredrik Dahlgren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


It is well known that to be able to represent continuous functions between domain representable spaces it is critical that the domain representations of the spaces we consider are dense. In this article we show how to develop a representation theory over a category of domains with morphisms partial continuous functions. The raison d’être for introducing partial continuous functions is that by passing to partial maps, we are free to consider totalities which are not dense. We show that there is a natural subcategory of the category of representable spaces with morphisms representable maps which is Cartesian closed. Finally, we consider the question of effectivity.


Domain theory domain representations computability theory computable analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AJ94]
    Abramsky, S., Jung, A.: Domain Theory. In: Handbook for Logic in Comp. Sci., vol. 3. Clarendon Press, Oxford (1994)Google Scholar
  2. [Bla00]
    Blanck, J.: Domain representations of topological spaces. Theor. Comp. Sci. 247, 229–255 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BST98]
    Blanck, J., Stoltenberg-Hansen, V., Tucker, J.: Streams, Stream Transformers and Domain Representations. In: Möller, B., Tucker, J.V. (eds.) NADA 1997. LNCS, vol. 1546, pp. 27–68. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. [BST02]
    Blanck, J., Stoltenberg-Hansen, V., Tucker, J.: Domain Representations of Partial Functions, with Applications to Spatial Objects and Constructive Volume Geometry. Theor. Comp. Sci. 28, 207–240 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Ers73]
    Ershov, Y.: Theorie der Numerierungen I. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 19, 289–388 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Ers75]
    Ershov, Y.: Theorie der Numerierungen II. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 473–584 (1975)MathSciNetCrossRefGoogle Scholar
  7. [Fio94]
    Fiore, M.: Axiomatic Domain Theory in Categories of Partial Maps, Ph.D. Thesis, University of Edinburgh (1994)Google Scholar
  8. [Ham05]
    Hamrin, G.: Admissible Domain Representations of Topological Spaces, U.U.D.M. report 2005:16 (2005)Google Scholar
  9. [Plo85]
    Plotkin, G.: Denotational Semantics with Partial Functions, Lecture Notes from the C.S.L.I. Summer School in 1985 (1985)Google Scholar
  10. [RR88]
    Robinson, E., Rosolini, G.: Categories of Partial Maps. Inf. and Comp. 79, 95–130 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Sch02]
    Schröder, M.: Extended Admissibility. Theor. Comp. Sci. 284, 519–538 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [SH01]
    Stoltenberg-Hansen, V.: Notes on Domain Theory, Lecture notes from the summer school on Proof and System Reliability in Marktoberdorf 2001 (2001)Google Scholar
  13. [SHT88]
    Stoltenberg-Hansen, V., Tucker, J.: Complete Local Rings as Domains. Journal of Symbolic Logic 53, 603–624 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [SHT95]
    Stoltenberg-Hansen, V., Tucker, J.: Effective Algebra. In: Handbook of Logic in Comp. Sci. vol. IV, pp. 357–526. Oxford University Press, Oxford (1995)Google Scholar
  15. [SLG94]
    Stoltenberg-Hansen, V., Lindström, I., Griffor, E.: Mathematical Theory of Domains. Cambridge Tracts in Comp. Sci (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fredrik Dahlgren
    • 1
  1. 1.Department of mathematicsUniversity of UppsalaUppsalaSweden

Personalised recommendations