Jewels of Institution-Independent Model Theory

  • Răzvan Diaconescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


This paper is dedicated to Joseph Goguen, my beloved teacher and friend, on the ocassion of his 65th anniversary. It is a survey of institution-independent model theory as it stands today, the true form of abstract model theory which is based on the concept of institution. Institution theory was co-fathered by Joseph Goguen and Rod Burstall in late 1970’s. In the final part we discuss some philosophical roots of institution-independent methodologies.


Institution Theory Actual Institution Relation Symbol Inclusion System Elementary Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Csakany, B., Fried, E., Schmidt, E.T. (eds.) Universal Algebra. Colloquia Mathematics Societas János Bolyai, vol. 29, pp. 13–35. North-Holland, Amsterdam (1981)Google Scholar
  2. 2.
    Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P., Sannella, D., Tarlecki, A.: CASL: The common algebraic specification language. Theoretical Computer Science 286(2), 153–196 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barbier, F.: Géneralisation et préservation au travers de la combinaison des logique des résultats de théorie des modèles standards liés à la structuration des spécifications algébriques. PhD thesis, Université Evry (2005)Google Scholar
  4. 4.
    Barwise, J.: Axioms for abstract model theory. Annals of Mathematical Logic 7, 221–265 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barwise, J., Feferman, S.: Model-Theoretic Logics. Springer, Heidelberg (1985)Google Scholar
  6. 6.
    Bernot, G., Le Gall, P., Aiguier, M.: Label algebras and exception handling. Science of Computer and Programming 23, 227–286 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bidoit, M., Hennicker, R.: On the integration of the observability and reachability concepts. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 21–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Borzyszkowski, T.: Higher-order logic and theorem proving for structured specifications. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 401–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286(2), 197–245 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag, Berlin (1986)zbMATHGoogle Scholar
  11. 11.
    Burstall, R., Goguen, J.: Semantics of Clear. In: Unpublished notes handed out at the 1978 Symposium on Algebra and Applications, Stefan Banach Center, Warsaw (1978)Google Scholar
  12. 12.
    Chang, C.C., Keisler, H.J.: Model Theory. North Holland, Amsterdam (1990)zbMATHGoogle Scholar
  13. 13.
    Círstea, C.: Institutionalising many-sorted coalgebraic modal logic. In Coalgebraic Methods in Computer Science 2002, Electronic Notes in Theoretical Computer Science (2002)Google Scholar
  14. 14.
    Sȩrbănut¸ă, T.: Institutional concepts in first-order logic, parameterized specification, and logic programming. Master’s thesis, University of Bucharest (2004)Google Scholar
  15. 15.
    Căzănescu, V.E., Ros̨u, G.: Weak inclusion systems. Mathematical Structures in Computer Science 7(2), 195–206 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Diaconescu, R.: Institution-independent Model Theory. Book draft (Ask author for current draft at (to appear)Google Scholar
  17. 17.
    Diaconescu, R.: Extra theory morphisms for institutions: logical semantics for multi-paradigm languages. Applied Categorical Structures 6(4), 427–453 (1998), A preliminary version appeared as JAIST Technical Report IS-RR-97-0032F in 1997zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Diaconescu, R.: Grothendieck institutions. Applied Categorical Structures 10(4), 383–402 (2002), Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638 (February 2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Diaconescu, R.: Institution-independent ultraproducts. Fundamenta Informaticæ 55(3-4), 321–348 (2003)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Diaconescu, R.: Elementary diagrams in institutions. Journal of Logic and Computation 14(5), 651–674 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Diaconescu, R.: Herbrand theorems in arbitrary institutions. Information Processing Letters 90, 29–37 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Diaconescu, R.: An institution-independent proof of Craig Interpolation Theorem. Studia Logica 77(1), 59–79 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Diaconescu, R.: Interpolation in Grothendieck institutions. Theoretical Computer Science 311, 439–461 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Diaconescu, R.: Proof systems for institutional logic. Journal of Logic and Computation (2006) (to appear)Google Scholar
  25. 25.
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theoretical Computer Science 285, 289–318 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Proceedings of a Workshop held in Logical Environment, Edinburgh, Scotland (May 1991)Google Scholar
  27. 27.
    Diaconescu, R., Petria, M.: Saturated models in institutions. (in preparation)Google Scholar
  28. 28.
    Diaconescu, R., Stefaneas, P.: Possible worlds semantics in arbitrary institutions. Technical Report 7, Institute ofMathematics of the Romanian Academy, ISSN 250-3638 (June 2003)Google Scholar
  29. 29.
    Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74, 65–71 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Fiadeiro, J.L., Costa, J.F.: Mirror, mirror in my hand: A duality between specifications and models of process behaviour. Mathematical Structures in Computer Science 6(4), 353–373 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. In: Ehrig, H., Orejas, F. (eds.) Abstract Data Types 1992 and COMPASS 1992. LNCS, vol. 785, pp. 1–34. Springer, Heidelberg (1994)Google Scholar
  33. 33.
    Grätzer, G.: Universal Algebra. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  34. 34.
    G˘ain˘a, D., Popescu, A.: An institution-independent generalization of Tarski’s Elementary Chain Theorem. Journal of Logic and Computation (to appear)Google Scholar
  35. 35.
    G˘ain˘a, D., Popescu, A.: An institution-independent proof of Robinson consistency theorem. Studia Logica (to appear)Google Scholar
  36. 36.
    Bell, J.L., Slomson, A.B.: Models and Ultraproducts. North-Holland, Amsterdam (1969)zbMATHGoogle Scholar
  37. 37.
    Lambek, J., Scott, P.: Introduction to Higher Order Categorical Logic, Cambridge. Cambridge Studies in Advanced Mathematics, vol. 7 (1986)Google Scholar
  38. 38.
    Lane, S.M.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  39. 39.
    Łoś, J.: Quleques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In: Mathematical Interpretation of Formal Systems, pp. 98–113. North-Holland, Amsterdam (1955)Google Scholar
  40. 40.
    Makkai, M.: Ultraproducts and categorical logic. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 222–309. Springer, Heidelberg (1996)Google Scholar
  41. 41.
    Makkai Stone, M.: duality for first order logic. Advances in Mathematics 65(2), 97–170 (1987)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Malcev, I.: The Metamathematics of Algebraic Systems. North-Holland, Amsterdam (1971)Google Scholar
  43. 43.
    Matthiessen, G.: Regular and strongly finitary structures over strongly algebroidal categories. Canad. J. Math. 30, 250–261 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Meseguer, J.: A logical theory of concurrent objects and its realization in the Maude language. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research Directions in Concurrent Object-Oriented Programming, The MIT Press, Cambridge (1993)Google Scholar
  46. 46.
    Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  47. 47.
    Mossakowski, T.: Foundations of heterogeneous specification. In: 16th Workshop on Algebraic Development Techniques 2002. LNCS, Springer, Heidelberg (2003)Google Scholar
  48. 48.
    Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic. In: Beziau, J.-Y. (ed.) Logica Universalis, pp. 113–133. Birkhauser, Basel (2005)CrossRefGoogle Scholar
  49. 49.
    Petria, M., Diaconescu, R.: Abstract Beth definability in institutions. Journal of Symbolic Logic (2006) (to appear)Google Scholar
  50. 50.
    Popescu, A., Sęrbănut̨ă, T., Ros̨u, G.: A semantic approach to interpolation (submitted)Google Scholar
  51. 51.
    Salibra, A., Scollo, G.: Interpolation and compactness in categories of pre-institutions. Mathematical Structures in Computer Science 6, 261–286 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Schröder, L., Mossakowski, T., Lüth, C.: Type class polymorphism in an institutional framework. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 234–248. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  53. 53.
    Tarlecki, A.: Bits and pieces of the theory of institutions. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 334–360. Springer, Heidelberg (1986)Google Scholar
  54. 54.
    Tarlecki, A.: On the existence of free models in abstract algebraic institutions. Theoretical Computer Science 37, 269–304 (1986), Preliminary version, University of Edinburgh, Computer Science Department, Report CSR-165-84 (1984)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Tarlecki, A.: Quasi-varieties in abstract algebraic institutions. Journal of Computer and System Sciences 33(3), 333–360 (1986), Original version, University of Edinburgh, Report CSR-173-84.zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Tarlecki, A., Burstall, R., Goguen, J.: Some fundamental algebraic tools for the semantics of computation, part 3: Indexed categories. Theoretical Computer Science 91, 239–264 (1991), Also, Monograph PRG–77, Programming Research Group, Oxford University (August 1989)zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Tarski, A., Vaught, R.: Arithmetical extensions of relational systems. Compositio Mathematicæ 13, 81–102 (1957)MathSciNetGoogle Scholar
  58. 58.
    His Holiness the XIVth Dalai Lama. The Universe in a Single Atom. Wisdom Publications (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Răzvan Diaconescu
    • 1
  1. 1.Institute of Mathematics of the Romanian Academy 

Personalised recommendations