Finding Lower Bounds for Nondeterministic State Complexity Is Hard

  • Hermann Gruber
  • Markus Holzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)

Abstract

We investigate the following lower bound methods for regular languages: The fooling set technique, the extended fooling set technique, and the biclique edge cover technique. It is shown that the maximal attainable lower bound for each of the above mentioned techniques can be algorithmically deduced from a canonical finite graph, the so called dependency graph of a regular language. This graph is very helpful when comparing the techniques with each other and with nondeterministic state complexity. In most cases it is shown that for any two techniques the gap between the best bounds can be arbitrarily large. Moreover, we show that deciding whether a certain lower bound w.r.t. one of the investigated techniques can be achieved is in most cases computationally hard, i.e., PSPACE-complete and hence is as hard as minimizing nondeterministic finite automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adorna, H.N.: Some descriptional complexity problems in finite automata theory. In: Saldaña, R.P., Chua, C. (eds.) Proceedings of the 5th Philippine Computing Science Congress, Cebu City, Philippines, March 2005, pp. 27–32. Computing Society of the Philippines (2005)Google Scholar
  2. 2.
    Bezrukov, S., Fronček, D., Rosenberg, S.J., Kovář, P.: On biclique coverings (preprint, 2005)Google Scholar
  3. 3.
    Birget, J.-C.: Intersection and union of regular languages and state complexity. Information Processing Letters 43, 185–190 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brzozowski, J.A.: Mathematical theory of automata. In: Canonical Regular Expressions and Minimal State Graphs for Definite Events. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, NY (1962)Google Scholar
  5. 5.
    Cameron, K.: Induced matchings. Discrete Applied Mathematics 24, 97–102 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Information Processing Letters 59, 75–77 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley, Reading (1968)Google Scholar
  8. 8.
    Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Hromkovič, J.: Descriptional complexity of finite automata: Concepts and open problems. Journal of Automata, Languages and Combinatorics 7(4), 519–531 (2002)MATHMathSciNetGoogle Scholar
  10. 10.
    Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of nondeterminism in finite automata. Report TR00-076, Electronic Colloquium on Computational Complexity (ECCC) (2000)Google Scholar
  11. 11.
    Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFAs over a unary alphabet. International Journal of Foundations of Computer Science 2(2), 163–182 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jirásková, G.: Note on minimal automata and uniform communication protocols. In: Martín-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing. Topics in Computer Mathematics, vol. 9, pp. 163–170. Taylor and Francis, Abington (2003)CrossRefGoogle Scholar
  14. 14.
    Kameda, T., Weiner, P.: On the state minimization of nondeterministic finite automata. IEEE Transactions on Computers C-19(7), 617–627 (1970)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transaction on Computing C-20, 1211–1219 (1971)CrossRefGoogle Scholar
  16. 16.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320(2–3), 315–329 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hermann Gruber
    • 1
  • Markus Holzer
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations